А.В. Коротков

ОСОБЕННОСТИ МНОГОМЕРНОГО (7-,15-,31-,... МЕРНОГО) ВЕКТОРНОГО ИСЧИСЛЕНИЯ И ЧИСЕЛ ПИФАГОРА, ДИОФАНТА И ФИБОНАЧЧИ

Рецензент: **Логинов В.Т.**, докт. техн. наук, профессор, академик Российской Инженерной Академии

Коротков А.В.

К 68 Особенности многомерного (7-,15-,31-,...мерного) векторного исчисления и чисел Пифагора, Диофанта и Фибоначчи. – Новочеркасск: Изд-во «НОК», 2013. – 65 с.

ISBN 978-5-8431-0284-5

В брошюре содержатся избранные труды автора по многомерному векторному исчислению (7-, 15- и 31-мерному). Изложение построено в традиционной символике с учетом потребности приложений, в которых используются векторное исчисление. Это делает ее доступной пониманию студентов, преподавателей и научных работников, специализирующихся во многих областях науки и техники. Рассмотрены вопросы применения 7-, 15- и 31-мерной векторных алгебр в области физики. Приводятся процедуры построения последовательностей чисел Пифагора, Диофанта и Фибоначчи. Брошюра окажется полезной, прежде всего, в области многомерной математической физики, в частности, в теории поля в физике элементарных частиц и теории чисел.

ББК 22.14 УДК 512.7

Глава 1 Формула Планка в D-мерных пространствах

©2013 г., А.В. Коротков Международный центр теоретической физики (2^n -1-D технологии), г. Новочеркасск

$$\begin{vmatrix} 3-D & 2^m-1 & 2n+1 \\ 2n+1 & 7-D & 2^m-1 \\ 2^m-1 & 2n+1 & 15-D \end{vmatrix}$$

О размерности многомерных векторных алгебр

Широко распространенная и сыгравшая в естествознании замечательную роль трехмерная векторная алгебра (Гамильтона-Грассмана), доминирующая уже в течение полутора столетий, имеет, в то же время, существенные ограничения в описании различных физических процессов. Это связано, например, с тем, что ограничение размерности приводит к ограничению степени зависимости силовых величин от расстояний величиной обратной второй степени расстояния. В качестве другого недостатка выступает наличие в трехмерной векторной алгебре лишь трех законов сохранения физических величин и описание процессов лишь с помощью двух первых производных от расстояний.

Это обусловливает невозможность применения 3-D векторных алгебр в области весьма малых расстояний и для увеличения точности описания процессов в области привычных расстояний. Поэтому принципиально важно построение многомерных векторных алгебр, остающихся в рамках линейных векторных пространств, но с фиксированным векторным произведением двух векторов. Этот принцип, видимо, был использован при создании трехмерной векторной алгебры.

Анализ способов построения векторных алгебр показал, что размерность алгебр определяется числом способов разбиения множества из n элементов на два непустых подмножества и соответствует ряду чисел: $1,3,7,15,31,\ldots,2^n-1,\ldots$ Он определяется рекуррентной формулой вида:

$$P_{n+1}=3P_{n}-2P_{n-1}$$

Силовые воздействия по законам Ньютона и Кулона не достаточно резко возрастают с уменьшением расстояния (обратно пропорционально второй степени расстояний (R^{-2})), что определяется трехмерной векторной алгеброй. Эту ситуацию могут исправить многомерные векторные алгебры, обеспечивающие обратную пропорциональность величин в значительно большей $(R^{-(D-1)})$ степени. Нами разработаны основы 7-ми, 15-ти и 31-номерной векторных алгебр, а также найден способ построения алгебр любой размерности из этого ряда чисел. При этом определены векторные произведения двух векторов 63-х, 127-ми, 255-ти, 511-ти, 1023-х и 2047-ми мерных векторных алгебр. Этот список может быть продолжен как угодно далеко.

Отметим, что вторым по значимости законом распределения силовых взаимодействий на относительно малых расстояниях является закон Юкавы, в

котором использована экспоненциальная зависимость сил от расстояний наряду со степенной. Характерную экспоненциальную особенность проявляют ортогональные обобщенные многочлены Лагерра. Не менее важны также статистика Бозе-Эйнштейна и формула Планка, обеспечившие торжество степенных и экспоненциальных соотношений, а также комбинаторного анализа для описания силовых взаимодействий на малых расстояниях.

Таким образом, напрашивается вывод:

- применение многомерных векторных алгебр для описания процессов на малых расстояниях должно сопровождаться использованием экспоненциальных и степенных зависимостей сил от расстояний,
- необходимо использовать комбинаторный анализ при нахождении способов разбиения множества элементов на непустые подмножества,
- необходимо объединить законы Ньютона (Кулона), Юкавы, Планка, статистику Бозе-Эйнштейна и комбинаторный анализ на единой базе 2ⁿ-1-мерных векторных алгебр.

Особое внимание следует уделить возможным законам сохранения. Отметим, что каждой векторной алгебре соответствует закон сохранения оператора момента импульсов как сумма квадратов операторов отдельных координат.

2ⁿ-1-но мерным векторным алгебрам соответствует также (векторное) произведение операторов момента импульсов. Именно такой принцип формирования векторных алгебр должен быть положен в основу их определения.

История вопроса

В формировании выдающейся формулы Планка участвовало большое количество физиков и математиков. Наиболее существенные моменты относятся к получению законов теплового излучения. Наибольшие вклады в теорию теплового излучения абсолютно черных тел внесли такие знаменитые физики, как собственно Планк, его предшественники по отдельным частям работы Релей и Джинс, получившие формулу Релея-Джинса, совпадающую с опытной зависимостью распределения излучения абсолютно черного тела по частотам и длинам волн в области больших длин волн. Кроме того Больцман и Стефан получили закон Стефана-Больцмана для энергетической светимости абсолютно черного тела. Не менее важную зависимость получил Вин, объяснивший смещение максимального значения спектральной плотности энергетической светимости.

По сути вопроса.

Предшественники Планка работали в рамках трехмерной классической термодинамики, как и Планк, построивший свою знаменитую формулу для спектральной плотности энергетической светимости, имеющую вид:

$$E_{\lambda,\mathrm{T}} = 2\pi h c^2 \frac{\lambda^{-5}}{e^{hc/k\lambda T} - 1}$$

где e - основание натуральных логарифмов, c - скорость света, k - постоянная Больцмана, указал на квантовый характер теплового излучения. В последующем периоде времени серьёзные результаты были получены в рамках квантовой статистики Бозе - Эйнштейна и представлении о фотонном газе в фазовом пространстве, определяемом тремя пространственными координатами и тремя

координатами импульса частиц. Эта статистика Бозе — Эйнштейна применима к фотонному газу в трехмерном пространстве (шестимерном фазовом пространстве). Квантовая статистика Бозе — Эйнштейна объяснила квантовый характер теплового излучения абсолютно черного тела.

Тем не менее, участие большого числа знаменитых ученых в данной теме не дало ответа на некоторые принципиальные вопросы. Основной из них — это размерность физического пространства, определяющая размерность фазового пространства и вслед за этим — размерность статистики Бозе — Эйнштейна, и, как результат, видоизменение формулы Планка на случай изменения размерности пространства.

В настоящее время, спустя столетие, многомерные пространства никого не удивляют. Разработаны векторные алгебры для пространств больших размерностей (не только 1 и 3, но также векторные алгебры размерности 7, 15, 31), и найдены структурные константы алгебр больших размерностей (63,127,...,1023,2047,...).

Это требует нахождения выражения для формулы Планка в случае больших размерностей пространства. С этой целью будем рассматривать формулу Планка в относительных единицах [1]. Для этого полагаем

$$z = \frac{kT}{hc}\pi$$
, $\pi = \frac{hc}{kT}z$, $d\pi = \frac{hc}{kT}dz$.

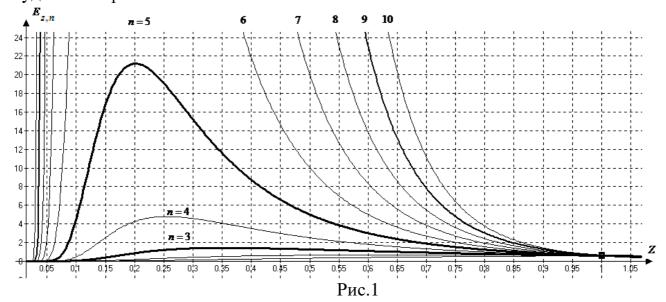
Подставив эту замену в формулу Планка

$$E_{\lambda,T} = 2\pi hc^2 \frac{\lambda^{-5}}{e^{hc/\lambda kT} - 1}$$

и произведя интегрирование, получим формулу

$$E_T = 2p hc^2 \left(\frac{kT}{hc}\right)^4 \int_0^\infty \frac{z^{-5}}{e^{1/z} - 1} dz$$
, r.e. $E_z = \frac{z^{-5}}{e^{1/z} - 1}$.

Интеграл в формуле для E_T равен $\frac{3!\pi^4}{90}$, так что попутно определяется закон Стефана-Больцмана с универсальными константами π , k, h, c.


$$y_3 = 2phc^2 * \frac{p^4}{15} (\frac{k}{hc})^4$$

Формула Планка построена в трехмерном физическом пространстве. Вместе с тем, кроме трехмерного пространства можно предположить наличие иных пространственных структур. Размерности векторных алгебр при этом определяются числами, которые создают числовой ряд: $1, 3, 7, 15, 31, ..., 2^n$ -1, ... или рекуррентным соотношением

$$P_{n+1}=3P_n-2P_{n-1}.$$

Будем рассматривать выражения формулы Планка для размерности пространства $D=0,\ 1,\ 2,\ \dots$ Формула (Планка) в относительных единицах позволяет построить графики для $E_{z,n}$, как функцию z и n (или D). Эти графики для некоторых значений n приведены ниже. На рис. 1 представлены графики зависимости E_z при $z=z(\lambda)$ и $n=2,3,4\dots$ Жирной линии соответствует формула Планка, то есть n=5 (или D=3). Наблюдается слоенность пространства, построенного из жирных и нежирных линий, соответствующих размерности

векторных алгебр (1, 3, 7, 15, ...), либо несоответствующих этой размерности. Амплитуда $E_{n_{\max}}$ резко возрастает с ростом n, что представляет определенные неудобства в работе.

Логарифмический масштаб по оси ординат исключает этот недостаток (Рис.2), но усложняет анализ закономерности.

Рисунки 1 и 2 показывают, что имеют место две точки пересечения кривых Планка для различных значений n, определяемые началом координат и точкой $(1, \frac{-1}{e-1})$ для логарифмического масштаба по оси $\ln E_{n,z}$ или $(1, \frac{1}{e-1})$ для равномерного распределения по оси $E_{n,z}$. Ненулевая точка пересечения кривых

может быть использована для целей масштабирования и квантования длин. При больших D кривые приобретают свойства единичного импульсного воздействия.

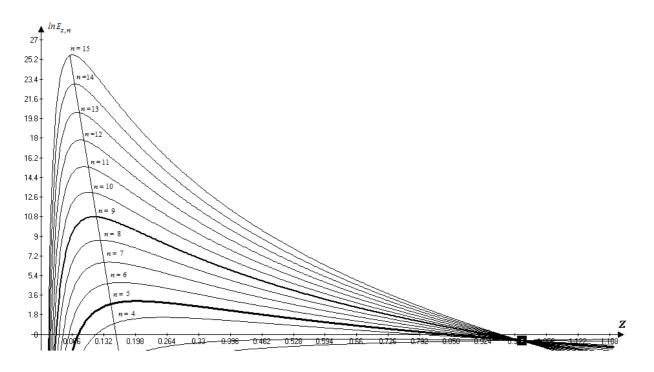


Рис.2

Все графики для формулы Планка при изменении n имеют одинаковую форму, спадающую на малых и больших длинах волн. Увеличение n сопровождается резким ростом амплитуды $E_{n_{\max}}$. Имеет место смещение амплитуды $E_{z_{\max}}$ для различных n в сторону меньших длин волн при увеличении n. Степень смещения беспредельно уменьшается с ростом n. Её можно оценить, продифференцировав формулу (Планка) и решив уравнение $\frac{dE_{n,z}}{dz}$ =0. Имеем

$$E_{n,z} = \frac{z^{-n}}{e^{1/z} - 1}.$$

Дифференцируя эту формулу по z,получаем соотношение

$$\frac{dE_{z,n}}{dz} = \frac{d}{dz} \left(\frac{z^{-n}}{e^{1/z} - 1} \right) = \frac{-n z^{-(n+1)} \left(e^{1/z} - 1 \right) - z^{-(n+2)} e^{1/z}}{\left(e^{-1/z} - 1 \right)^2}$$

Полагая это выражение равным нулю в результате преобразований получим $z^{-1}_{\max} = n(1 - e^{-1/z_{\max}}) \ .$

Закон Вина в многомерном пространстве находится аналогично.

Решение этого трансцендентного уравнения дает таблицу значений z_{max} , соответствующих максимальному значению $E_{z_{max}}$ и, очевидно, отклоняющемуся с ростом п в сторону меньших значений z. С ростом п степень отклонения $E_{z_{max}}$ беспредельно уменьшается (табл.2).

Таблица 2

D	n	$1/z_{max}$	D	n	$1/z_{max}$	D	n	$1/z_{max}$
0	2	1,593624262	<u>7</u>	9	<u>8,998881625</u>	14	16	15,99999820
1	<u>3</u>	<u>2,821439372</u>	8	10	9,999545794	<u>15</u>	<u>17</u>	<u>16,99999930</u>
2	4	3,920690395	9	11	10,99981625	16	18	17,99999973
3	<u>5</u>	<u>4,965114232</u>	10	12	11,99992626	17	19	18,99999989
4	6	5,984901226	11	13	12,99997061	18	20	19,99999996
5	7	6,993575687	12	14	13,99998836	19	21	20,99999998
6	8	7,997309068	13	15	14,99999541	20	22	21,99999999

Следует отметить, что амплитуды $E_{z,n}$ для различных z_{\max} лежат на одной и той же кривой, определяемой уравнением

$$E_z \approx e^{\left(\frac{1}{2.821z}\right)^2} - 1$$

Возвращаясь от безразмерного вспомогательного переменного z_{\max} к размерным величинам, находим:

$$\pi_{\text{max}} = \frac{hc}{kT} z_{\text{max}} = \frac{hc}{4.97kT}$$

или

$$\pi_{\text{max}}T = \frac{hc}{4.97k} = 2,89*10^{-1} [cM*K] = const,$$

что соответствует закону Вина.

Формула Планка как функция частоты излучения имеет следующий вид:

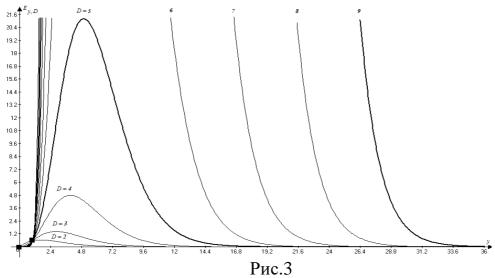
$$E_{v,T} = \frac{2\pi h}{c^2} \frac{v^3}{e^{hv/kT} - 1}.$$

где e - основание натуральных логарифмов, c - скорость света, k - постоянная Больцмана. Будем рассматривать формулу Планка в относительных единицах. Для этого полагаем

$$y = \frac{h}{kT}v$$
, $v = \frac{kT}{h}y$, $dv = \frac{kT}{h}dy$.

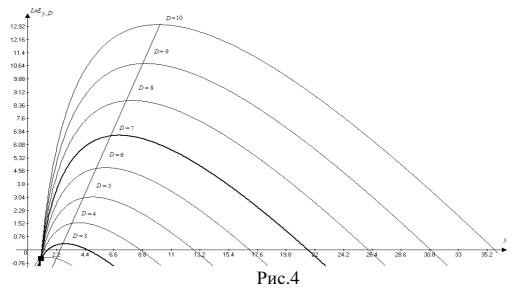
Подставив эту замену в формулу Планка

$$E_{v,T} = \frac{2\pi h}{c^2} \frac{v^3}{e^{hv/kT} - 1}$$


и произведя интегрирование, получим формулу

$$E_T = 2p hc^2 \left(\frac{kT}{hc}\right)^4 \int_0^\infty \frac{y^3}{e^y - 1} dy$$
, T.e. $E_y = \frac{y^3}{e^y - 1}$.

Интеграл в формуле для E_T равен $\frac{3!\pi^4}{90}$, так что попутно определяется закон Стефана-Больцмана с универсальными константами π , k, h, c


$$y_3 = 2phc^2 * \frac{p^4}{15} (\frac{k}{hc})^4$$

Будем рассматривать выражения формулы Планка для размерности пространства $D=0,\ 1,\ 2,...$ в зависимости от частоты излучения в относительных единицах. Это позволяет построить графики для $E_{_{y,D}}$, как функцию y и D. Эти графики для некоторых значений D приведены ниже. На рис. 3 представлены графики зависимости $E_{_y}$ при y=y(v) и $D=2,3,4,\ldots$ Жирной линии соответствует формула Планка, то есть D=3, а полужирной D=7. Наблюдается слоённость пространства, построенного из жирных и нежирных линий, соответствующих размерности векторных алгебр $(1,3,7,15\ldots)$, либо несоответствующих этой размерности. Амплитуда $E_{_{y_{\max}}}$ резко возрастает с ростом D, что является недостатком.

Логарифмический масштаб по оси ординат исключает этот недостаток (Puc.4), но усложняет анализ закономерности.

Рис. 3 и 4 показывают, что имеют место две точки пересечения кривых Планка для различных значений D, определяемые началом координат и точкой (1, ---) для логарифмического масштаба по оси $ln E_{y,D}$ или (1, ----) для равномерного распределения по оси $E_{y,D}$. Ненулевая точка пересечения кривых может быть использована для целей масштабирования (квантования) времени (частоты).

Все графики для формулы Планка при изменении D имеют одинаковую форму, спадающую на малых и больших частотах. Увеличение D сопровождается резким ростом амплитуды $E_{D\,\text{max}}$. Имеет место смещение амплитуды $E_{y_{\text{max}}}$ для различных D в сторону больших частот при увеличении D. Степень смещения можно оценить, решив уравнение $\frac{dE_{y,D}}{dy}$ =0.

Продифференцировав формулу (Планка) находим закон Вина в многомерном пространстве.

$$\frac{dE_{y,D}}{dy} = \frac{d}{dy} \left(\frac{y^{D}}{e^{y} - 1} \right) = \frac{Dy^{D-1} (e^{y} - 1) - y^{D} e^{y}}{(e^{y} - 1)^{2}},$$

т.е

$$y^{D-1}(D(e^y-1)-ye^y)=0$$

Отсюда, умножая на e^{-y} , получим соотношение

$$y_{\text{max}} = D(1 - e^{-y_{\text{max}}})$$
.

Решение этого трансцендентного уравнения дает таблицу значений y_{max} , соответствующих максимальному значению $E_{y_{\max}}$ и, очевидно, отклоняющемуся с ростом D в сторону больших значений у. С ростом D степень отклонения $E_{y_{\max}}$ беспредельно уменьшается (Табл.2).

Таблица 3

D	n	y_{max}	D	n	y_{max}	D	n	y_{max}
0	2	1,593624262	<u>7</u>	9	8,998881625	14	16	15,99999820
1	<u>3</u>	<u>2,821439372</u>	8	10	9,999545794	<u>15</u>	<u>17</u>	<u>16,99999930</u>
2	4	3,920690395	9	11	10,99981625	16	18	17,99999973
3	<u>5</u>	<u>4,965114232</u>	10	12	11,99992626	17	19	18,99999989
4	6	5,984901226	11	13	12,99997061	18	20	19,99999996
5	7	6,993575687	12	14	13,99998836	19	21	20,99999998
6	8	7,997309068	13	15	14,99999541	20	22	21,99999999

Следует отметить, что амплитуды $E_{y,D}$ для различных y_{\max} лежат на одной и той же кривой, определяемой уравнением

$$E_{y_{\text{max}}} \approx e^{\left(\frac{y}{2,821}\right)^2} - 1$$

Возвращаясь от безразмерного вспомогательного переменного y_{\max} к размерным величинам, находим:

$$v_{\text{max}} = \frac{kT}{h} y_{\text{max}} = \frac{2,821kT}{h}$$

или

$$\frac{v_{\text{max}}}{T} = \frac{2,821k}{h} = 5,87*10^{10} \left[\frac{1}{K*c} \right] = const$$

что является аналогом закона Вина.

При этом v_{max} пропорциональна температуре.

Очевидно, рассмотрение зависимости у и z от n и D дает целый ряд постоянных размерных и безразмерных величин, а также соотношений между ними при изменении n и D, например, соотношение

$$\lambda_{\text{max}} * \nu_{\text{max}} = \frac{2.82}{4.97} c = 0.567 c [cm/c] = const.$$

Такие соотношения можно строить при каждом значении п. Например

$$\frac{v_{\text{max}}}{\lambda_{\text{max}} T^2} = 2,031*10^{12} \left[\frac{1}{cM \ c \ K^2} \right] = const$$

Площадь под кривой (Планка) в относительных единицах можно найти, используя соотношение

$$S = \Gamma * \zeta$$

где Γ – Γ амма- , а ζ – дзета функция Римана.

Определим характер изменения площадей кривых (Планка) в зависимости от n или D (табл.4), полученные путем интегрирования.

Таблица 4

D,(n)	(3)	2,(4)	3,(5)	4,(6)	5,(6)	6,(8)	7,(9)	 15,(17)
Γ(D+1)	1,00000	2,00000	6,00000	24,0000	120,000	720,000	5040,00	 $1,308*10^{12}$
$\zeta(D+1)=$	1,64493	1,20205	1,08232	1,03692	1,01734	1.00834	1,00407	 1,00001528
$=\zeta(D+1)$	$\pi^{2}/6,00$	$\pi^{3}/25,79$	$\pi^{4}/90,0$	$\pi^{5}/295,1$	$\pi^{6}/925,0$	$\pi^{7}/2995$	$\pi^{8}/9450$	 $\pi^{16}/90032220$
$S = \Gamma * \zeta$	1,64493	2,40410	6,49390	24,8861	122,081	726,005	5060,51	 $1,308*10^{12}$
зн. ζ/D!	6,00000	12,8970	15,0000	12,2967	7,70830	4,16010	1,87500	 6,8848*10-5

Очевидно, что площадь графика $S=\Gamma(D+1)*\zeta(D+1)$, характеризующая энергию с ростом размерности пространства, интенсивно возрастает. Коэффициент пропорциональности определяется числами z_{max} , либо y_{max} в таблицах 2(3). Функция (знаменатель ζ)/D! дает график, совпадающий с кривой Планка, т.е. (зн. ζ) /D!= $E_{v.D.}$

При этом

$$n-1=D+1 , \Gamma(n-1)=D! , \Gamma(D+1)=D! ,$$

$$\zeta(n-1)=\frac{\pi^{n-1}}{(3H.\zeta)(n-2)!}, \quad \zeta(D+1)=\frac{\pi^{D+1}}{(3H.\zeta)D!}.$$

Интегрирование дает

$$\int_{0}^{\infty} \frac{z^{-n}}{e^{1/z} - 1} dz = \Gamma(n - 1) \Re(n - 1), \qquad \int_{0}^{\infty} \frac{y^{D}}{e^{y} - 1} dy = \Gamma(D + 1) \Re(D + 1),$$

Коэффициент пропорциональности определяется формулой Планка (Табл.2). Так в случае $n=5 \ (D=3)$

$$\Gamma(4) = 3!$$

$$x(4) = \frac{p^4}{3!*15},$$

причем постоянная Стефана-Больцмана равняется

$$y_3 = 2phc^2 * \frac{p^4}{15} (\frac{k}{hc})^4$$

При иной размерности пространства меняются величины

$$\Gamma(D+1) = D!, \quad \zeta(D+1) = \frac{\pi^{D+1}}{(3H.\zeta)D!},$$

а, следовательно, и σ_D . Например, при D=7

$$y_7 = 2phc^2 \frac{8p^8}{15} (\frac{k}{hc})^8$$
,

при D=15

$$y_{15} = 2phc^2 \frac{9,003*10^7}{1,308*10^{12}} \pi^{16} \left(\frac{k}{hc}\right)^{16}.$$

В трехмерном пространстве

$$\begin{aligned} v_{\text{max}} &= \frac{kT}{h} y_{\text{max}} = 2,82 \frac{kT}{h} \frac{v_{\text{max}}}{T} = 2,82 \frac{k}{h} = const, \\ \lambda_{\text{max}} &= \frac{hc}{kT} z_{\text{max}} = \frac{hc}{4,97kT}, \ \lambda_{\text{max}} T = \frac{hc}{4,97k} = const, \\ \lambda_{\text{max}} v_{\text{max}} &= y_{\text{max}} z_{\text{max}} = \frac{2,82c}{4,97} = 0,567c = const. \end{aligned}$$

В семимерном пространстве

$$\begin{split} v_{\text{max}} &= \frac{kT}{h} \, y_{\text{max}} = 6,993 \frac{kT}{h} \, , \quad \frac{v_{\text{max}}}{T} = 6,993 \frac{k}{h} = const, \\ \lambda_{\text{max}} &= \frac{hc}{kT} \, z_{\text{max}} = \frac{hc}{8,998kT} \, , \quad \lambda_{\text{max}} T = \frac{hc}{8,998k} = const, \\ \lambda_{\text{max}} v_{\text{max}} &= y_{\text{max}} \, z_{\text{max}} = \frac{6,993c}{8,998} = 0,777c = const. \end{split}$$

Для пятнадцатимерного пространства

$$\begin{split} & v_{\max} = \frac{kT}{h} \ y_{\max} = 14,999 \frac{kT}{h}, \quad \frac{v_{\max}}{T} = 14,999 \frac{k}{h} = const, \\ & \lambda_{\max} = \frac{hc}{kT} \ z_{\max} = \frac{hc}{16,999kT}, \quad \lambda_{\max} T = \frac{hc}{16,999k} = const, \\ & \lambda_{\max} v_{\max} = \frac{14,999c}{16,999} = 0,882c = const. \end{split}$$

Отметим, что эти функции дают графики, совпадающие с функцией Планка при низких частотах. С увеличением числа элементов разложения ряда степень совпадения графиков увеличивается.

В таблицах 5 и 6 показан характер изменения плотности энергии в зависимости от размерности пространства n и D=n-2 в координатах у или z. Из этих таблиц следует, что с каждой размерностью пространства связана соответствующая кривая Планка. Амплитуда плотности энергии довольно интенсивно нарастает с ростом размерности пространства. Имеются по одной не нулевой точке пересечения кривых. Амплитуда плотности энергии в случае распределения по частотам изменяется линейно, а в случае распределения по длинам волн – экспоненциально. Важным моментом является фрактальный изменения графиков плотности энергии. Это характеризуется постоянным коэффициентом, определяемым величиной z или y по всей длине таблицы. Это наиболее очевидно при y = 1 и y = 10, а так же z = 0,1.

Планка

кривых

фрактальности, который остается постоянным.

определяется

коэффициентом

Заключение

Пропорциональность

Таким образом, описание силовых взаимодействий может быть связано с увеличением размерности (2^n-1) пространства с уменьшением расстояний от привычных значений в область микромира. Размерность векторных алгебр может быть сколь угодно большой. Векторные алгебры большой размерности могут задействовать формулу Планка с изменением показателя степени n или D в степенной части функции. Это позволяет рассматривать единое поле как структуру, определяемую размерностью пространства, т.е. степенью степенной части формулы Планка при изменении степени до сколь угодно больших величин.

Очевидно, попытка описать силовые взаимодействия в области малых расстояний значениями, значительно превышающими величину обратно пропорциональную квадрату расстояний, приводит к необходимости повышения степени числителя в формуле Планка. Сама формула при этом существенно видоизменяется, значение степени в ней может определяться размерностью многомерной векторной алгебры, причем с ростом размерности неограниченно возрастают силовые взаимодействия между частицами, и осуществляется

смещение максимума кривой в сторону весьма малых значений расстояний, либо в сторону весьма больших частот.

Площадь под кривой (Планка) определяется через Гамма- и дзета-функции и интенсивно растет с ростом D и n. При этом Гамма — функция определяет факториал D, а дзета-функция — число π^{D+1} . Константы связи между переменными в многомерных пространствах индивидуальны для каждой из размерностей.

Необходимо отметить, что повышение размерности векторных алгебр сопровождается лишь изменением соотношений между координатами, поскольку алгебры любой меньшей размерности являются подалгебрами более высокой размерности. Это приводит к тому, что соотношения между координатами меняются дискретно, как и количество задействованных координат. Так, трехмерная алгебра получается из семимерной пренебрежением значениями четырех координат $x_4, ..., x_6, x_7 = 0$, семимерная алгебра из пятнадцатимерной – пренебрежением значениями восьми координат $x_8, ..., x_{14}, x_{15} = 0$. Аналогично можно пренебрегать отдельными координатами в алгебрах больших размерностей. Таким образом, имеет место единый способ описания силовых взаимодействий по мере уменьшения расстояний между частицами вплоть до самых малых значений расстояний и самых высоких энергий.

Таким образом, изменение степени частоты (либо длины волны) в формуле Планка позволяет использовать эту формулу в многомерном слоёном пространстве с фиксацией максимальных значений дискретных уровней энергии сколь угодно большой величины и минимальных значений расстояний между частицами.

Литература

- 1. Градштейн И.С., Рыжик И.М., Таблицы интегралов, сумм, рядов и произведений, «Наука», 1971.
- 2. Зисман Г.А., Тодес О.М. Курс общей физики, т.3. М: Изд-во "Наука", 1972. 496с. (с илл.).
- 3. Коротков А. В. Элементы семимерного векторного исчисления. Алгебра. Геометрия. Теория поля. Новочеркасск: Набла, 1996. 244 с.
- 4. Коротков А. В. Элементы пятнадцатимерного векторного исчисления. Новочеркасск: Изд-во "НОК", 2011. 36с.

УДК 512/7

Физико-математические науки.

В статье рассматриваются вопросы построения основ статистики Бозе-Эйнштейна для многомерного пространства. Число фазовых ячеек в многомерном случае равно 2-D. Рассмотрение проведено в многомерных сферических координатах. Записаны выражения Dмерного элемента объема, элемента поверхности, полной поверхности и на их основекинетической энергии, импульса, числа ячеек, числа частиц фотонного газа, плотности энергии и полной энергии. Показано, что постоянная Стефана-Больцмана зависит от размерности пространства, а энергия излучения определяется Гамма- и дзета-функциями. Это позволяет установить формулу Планка для размерности D вплоть до самых больших значений энергии и достижения самых малых размеров частиц.

Коротков Анатолий Васильевич, к.т.н., д.ф.-м.н., доцент., Акад. МАСИ.

Международный центр теоретической физики, г. Новочеркасск

адрес: avkorotkov1945@yandex.ru

Ключевые слова и фразы: многомерное пространство, статистика Бозе-Эйнштейна, фазовые ячейки, элемент объема, числа ячеек, числа частиц фотонов газа, постоянная Стефана-Больцмана, формула Планка.

Особенности статистик Бозе-Эйнштейна в многомерном пространстве

©2013г., А.В. Коротков

Международный центр теоретической физики (2ⁿ-1-D технологии), г. Новочеркасск

$$\begin{vmatrix}
3-D & 2^m-1 & 2n+1 \\
2n+1 & 7-D & 2^m-1 \\
2^m-1 & 2n+1 & 15-D
\end{vmatrix}$$

Число фазовых ячеек z_i в элементе фазового пространства

$$\prod_{1}^{n} dx_{n} \prod_{1}^{n} dp_{n}$$

 $\prod_{1}^{n}dx_{n}\prod_{1}^{n}dp_{n}$ в D-мерном пространстве равно отношению величины элемента к h^{n} [1]:

$$Z_i = \frac{\prod_{1}^{n} dx_n \prod_{1}^{n} dp_n}{h^n}.$$

Для выражения произведения дифференциалов импульсов *dp* через кинетическую энергию ε целесообразно перейти к сферическим координатам [2]

$$\begin{split} p_{x_1} &= p\cos\phi_2, \\ p_{x2} &= p\sin\phi_2\cos\phi_3, \\ p_{x3} &= p\sin\phi_2\sin\phi_3\cos\phi_4, \\ \dots & \dots & \dots \\ p_{x_{D-2}} &= p\sin\phi_2\sin\phi_3 & \dots & \sin\phi_{D-2}\cos\phi_{D-1}, \\ p_{x_{D-1}} &= p\sin\phi_2\sin\phi_3 & \dots & \sin\phi_{D-2}\sin\phi_{D-1}\cos\phi_D, \\ p_{x_D} &= p\sin\phi_2\sin\phi_3 & \dots & \sin\phi_{D-2}\sin\phi_{D-1}\sin\phi_D, \end{split}$$

где

$$p \ge 0,$$

 $0 \le \phi_i \le \pi, (i = 2, 3, ..., D - 1)$
 $0 \le \phi_D \le 2\pi.$

D-мерный элемент объема задается в этих координатах формулой $dV = p^{D-1} (\sin \phi_2)^{D-2} (\sin \phi_3)^{D-3} ... (\sin \phi_{D-1})^1 dp d\phi_2 d\phi_3 ... d\phi_{D-1} d\phi_D,$

элемент поверхности n-1-мерной единичной сферы $d\Omega$ - формулой

$$d\Omega = (\sin\phi_2)^{D-2} (\sin\phi_3)^{D-3} ... (\sin\phi_{D-1})^1 d\phi_2 d\phi_3 ... d\phi_{D-1} d\phi_D$$

Полная поверхность D-1-мерной единичной сферы Ω представляется формулой

$$\Omega = \frac{2\pi^{(D-1)/2}}{\Gamma((D-1)/2)}.$$

Кинетическая энергия ε и импульс p связаны функцией Гамильтона

$$arepsilon=rac{p^2}{2m},$$
 где $m-$ масса частиц фотонного газа, откуда
$$dp=rac{(2m)^{D/2}arepsilon^{(D-2)/2}}{2}darepsilon$$

Число энергетических ячеек z_i равно:

$$z_{i} = \frac{p^{D-1} \sin \phi_{D}}{h^{D}} d\phi_{2}...d\phi_{D-1} d\phi_{D} dp dV =$$

$$= \frac{(2m)^{D/2} \varepsilon^{(D-2)/2} \sin \phi_{n}}{2h^{D}} d\phi_{2}...d\phi_{D-1} d\phi_{D} dp dV$$

Число частиц газа, подчиняющегося статистике Бозе-Эйнштейна в n-мерном пространстве

$$\begin{split} N &= \sum_{i} D_{i} = \\ &= \frac{(2m)^{D/2}}{2h^{D}} \int_{0}^{\infty} \frac{\mathcal{E}^{(D-2)/2}}{e^{\frac{\mathcal{E}-\mu}{kT}} - 1} d\mathcal{E} \int_{0}^{V} dV \int_{0}^{\pi} d\phi_{2} \int_{0}^{\pi} d\phi_{3} ... \int_{0}^{\pi} d\phi_{D-1} \int_{0}^{2\pi} \sin\phi_{D} d\phi_{D} = . \\ &= \frac{2\pi V (2m)^{D/2}}{h^{D}} \int_{0}^{\infty} \frac{\mathcal{E}^{(D-2)/2}}{e^{\frac{\mathcal{E}-\mu}{kT}} - 1} d\mathcal{E} \end{split}$$

Полная энергия

$$E = \sum_{i} D_{i} \varepsilon_{i} = \frac{2\pi V (2m)^{D/2}}{h^{D}} \int_{0}^{\infty} \frac{\varepsilon^{(D-2)/2}}{e^{\frac{\varepsilon-\mu}{kT}} - 1} d\varepsilon.$$

Излучение рассматривается как идеальный газ, состоящий из частиц света — фотонов. Энергия фотона ε равна hv, импульс фотона p равен $\frac{hv}{c}$, масса фотонов, согласно соотношению между энергией и массой, равняется $\frac{hv}{c^2}$.

Данной частоте ν , соответствующей излучению, поляризованному в противоположные стороны, для полного числа частиц можно найти выражение

для числа фотонов dN_{ν} , которым соответствуют частоты в интервале от ν до $\nu+d\nu$:

$$dN_{v} = \frac{2\pi}{h^{D}} \frac{Vp^{D-1}}{e^{\varepsilon/kT} - 1} dp$$

В этой формуле μ для излучения равно нулю, T — температура фотонного газа.

Энергия равновесного излучения в указанном интервале частот:

$$E_{v} = e_{v} dN_{v} = \frac{8\pi h^{D-2}}{c^{D}} \frac{V}{e^{hv/kT} - 1} dv$$

Плотность энергии в единичном интервале частот можно получить, разделив энергию на объем V излучения и ширину интервала частот dv:

$$\frac{E_{v}}{Vdv} = \frac{8\pi h^{D-2}}{c^{D}} \frac{v^{D}}{e^{hv/kT} - 1}.$$

Последнее равенство аналогично формуле Планка и отличается от нее степенью частоты в числителе.

Полная энергия излучения по всем частотам от 0 до ∞ :

$$E = \int_{0}^{\infty} E_{\nu} d\nu = \frac{2\pi h^{D}}{c^{D-1}} \int_{0}^{\infty} \frac{v^{D}}{e^{h\nu/kT} - 1} d\nu =$$

$$= 2\pi^{D+2} hc^{2} \left(\frac{kT}{ch}\right)^{D+1} = \sigma_{D} T^{D+1}.$$

Постоянная Стефана-Больцмана существенно зависит от размерности пространства. Так в случае семимерного пространства, имеем:

$$y_7 = 2\pi hc^2 \frac{8p^8}{15} \left(\frac{k}{hc}\right)^8$$

при D=15

$$y_{15} = 2phc^2 \frac{9,003*10^7}{1,308*10^{12}} \pi^{16} \left(\frac{k}{hc}\right)^{16}.$$

Площадь под полученной кривой (Планка) [5] можно найти в

относительных единицах,

$$\int\limits_0^\infty \frac{y^D}{e^D-1} dy = \Gamma(D+1) \mathrm{ж}(D+1) \quad \text{используя соотношение}$$

где $\Gamma - \Gamma$ амма- , а $\zeta -$ дзета функция Римана,

$$\Gamma(D+1) = D!$$
 , $\zeta(D+1) = \frac{\pi^{D+1}}{(3H.\zeta)D!}$,
$$S = \Gamma(D+1) \Re(D+1) = \frac{p^{n+1}}{(3H.\zeta)}.$$

Результаты расчетов приведены в табл.1.

Таблица 1

D		2	3	4	5	6	7	 15
Γ(D+1)	1,00000	2,00000	6,00000	24,0000	120,000	720,000	5040,00	 $1,308*10^{12}$
$\zeta(D+1)=$	1,64493	1,20205	1,08232	1,03692	1,01734	1.00834	1,00407	 1,00001528
$=\zeta(D+1)$	$\pi^2/6,00$	$\pi^{3}/25,79$	$\pi^{4}/90,0$	$\pi^{5}/295,1$	$\pi^{6}/925,0$	$\pi^{7}/2995$	$\pi^{8}/9450$	 $\pi^{16}/90032220$
$S = \Gamma^* \zeta$	1,64493	2,40410	6,49390	24,8861	122,081	726,005	5060,51	 $1,308*10^{12}$
зн. ζ/D!	6,00000	12,8970	15,0000	12,2967	7,70830	4,16010	1,87500	 6,8848*10-5

Очевидно, что площадь графика $S=\Gamma(D+1)*\zeta(D+1)$, характеризующая энергию, с ростом размерности пространства, интенсивно возрастает. Функция (знам. ζ)/D! дает график, совпадающий с кривой Планка при D=3, причем этом

(знам.
$$\zeta$$
) /D!= $E_{v,D}$.

$$\Gamma(D+1) = D!$$
 , $\zeta(D+1) = \frac{\pi^{D+1}}{(3Ham.\zeta)D!}$, $S = \Gamma^*\zeta$.

Коэффициент пропорциональности определяется формулой Планка. Так в случае D=3

$$\Gamma(4) = 3!, \quad \pi(4) = \frac{p^4}{3!*15},$$

причем постоянная Стефана-Больцмана равняется

$$y_3 = 2phc^2 * \frac{p^4}{15} (\frac{k}{hc})^4$$

При иной размерности пространства меняются величины

$$\Gamma(D+1) = D!, \quad \zeta(D+1) = \frac{\pi^{D+1}}{(3HAM.\zeta)D!},$$

а, следовательно, и σ_D . Например, при D=7

$$y_7 = 2phc^2 \frac{8p^8}{15} (\frac{k}{hc})^8$$
,

при D=15

$$y_{15} = 2phc^2 \frac{9,003*10^7}{1,308*10^{12}} \pi^{16} \left(\frac{k}{hc}\right)^{16}.$$

Найденные коэффициенты и соотношения могут корректироваться, например, при получении формулы Планка для распределении энергии по длинам волн. Однако, можно говорить о возрастании функции Планка с ростом размерности вплоть до самых больших значений энергий и достижения самых малых размеров частиц.

Таким образом, в многомерном пространстве изменяются энергетические величины, в частности необходимо рассматривать n-мерное фазовое пространство с n-координатами и n-компонентами импульса. Это влечет за собой увеличение размерности статистики Бозе-Энштейна, и получаемой из неё формулы Планка. Т.е. необходимо рассматривать многомерную векторную алгебру, которая включает трехмерную векторную алгебру, как подалгебру.

В такой формуле Планка существенно возрастает степень числителя, а, энергетические показатели. С увеличением существенно уменьшается расстояние до центра частиц. Уменьшение расстояния и увеличение силовых воздействий происходит при увеличении размерности векторной алгебры. Отметим, что нами разработаны основы 7-,15-, 31-мерной векторных алгебр и найдены векторные произведения двух векторов для 63-,127-,...,2047-мерной векторных алгебр. Процесс может быть продолжен до бесконечно больших величин. Алгебры больших размерностей более симметричны, нежели алгебры меньших размерностей.

Литература

- 1. Градштейн И.С., Рыжик И.М., Таблицы интегралов, сумм, рядов и произведений, «Наука», 1971.
- 2. Карякин Н.И. и др., Краткий справочник по физике, ГИ «Высшая школа», 1963.-559 с.
- 3. Коротков А. В. Элементы семимерного векторного исчисления. Алгебра. Геометрия. Теория поля. Новочеркасск: Набла, 1996. 244 с.
- 4. Коротков А. В. Элементы многомерного(15- и 31-мерного) векторного исчисления. Новочеркасск: Изд-во "НОК", 2012. 76с.
- 5. Коротков А. В. Формула Планка в D-мерных пространствах. Альманах современной науки и образования №3 (70) Тамбов. Изд-во «Грамота», 2013.

Физико-математические науки.

В работе рассматриваются вопросы построения способов решения многомерных дифференциальных уравнений второго порядка в частных производных на примере решения многомерного уравнения Гельмгольца. Аналогичные решения могут быть получены для волнового уравнения, уравнения теплопроводности, уравнения диффузии, уравнения Лапласа. Особое внимание следует уделить решению уравнений размерности 2^n -1, что соответствует применению многомерных векторных алгебр.

Коротков Анатолий Васильевич, к.т.н., д.ф.-м.н., доцент., Акад. МАСИ.

Международный центр теоретической физики, г. Новочеркасск

adpec: avkorotkov1945@yandex.ru

Ключевые слова и фразы: многомерные дифференциальные уравнения, частные производные, второй порядок, Гельмгольц, Лаплас, уравнение теплопроводности, волновое уравнение, уравнение диффузии, уравнение теплопроводности, размерность пространства, многомерное пространство, многомерная векторная алгебра.

Решения п-мерного уравнения Гельмгольца

©2012г., А.В. Коротков Международный центр теоретической физики (2^n -1-D технологии), г. Новочеркасск

Будем искать решения $D=\lambda_i+i$ -мерного уравнения Гельмгольца $(i=1,2,...,\,D\text{-}2,D\text{-}1),\,(\lambda_i=D\text{-}1,\,D\text{-}2,\,...,\,2,1)$

$$\mathcal{L}_{i}\mathcal{L}_{i}+m_{i}^{2}\mathcal{L}_{i}=0,$$

записанного в сферической D-мерной системе координат $(\mathcal{U}_{I}(r_{I},\phi_{2},...,\phi_{\lambda_{1}+2}))[1,2],$ понимая под D - размерность векторной алгебры, в виде:

$$\frac{1}{r_{l}^{\lambda_{i}}}\frac{\partial}{\partial r_{l}}\left(r_{l}^{\lambda_{i}}\frac{\partial\mathcal{U}_{i}}{\partial r_{l}}\right)+\frac{1}{r_{l}^{2}S_{2}^{\lambda_{i+l}}}\frac{\partial}{\partial \varphi_{i+l}}\left(S_{i+l}^{\lambda_{i+l}}\frac{\partial\mathcal{U}_{i}}{\partial \varphi_{i+l}}\right)+\frac{1}{r_{l}^{2}S_{i+l}^{2}S_{i+2}^{2}}\frac{\partial}{\partial \varphi_{i+2}}\left(S_{i+2}^{\lambda_{i+2}}\frac{\partial\mathcal{U}_{i}}{\partial \varphi_{i+2}}\right)+\ldots+\frac{1}{r_{l}^{2}S_{i+l}^{2}S_{i+2}^{2}}\frac{\partial}{\partial \varphi_{i+2}}\left(S_{i+2}^{\lambda_{i+2}}\frac{\partial\mathcal{U}_{i}}{\partial \varphi_{i+2}}\right)+\ldots+\frac{1}{r_{l}^{2}S_{i+l}^{2}S_{i+2}^{2}}\frac{\partial}{\partial \varphi_{i+2}}\left(S_{i+2}^{\lambda_{i+2}}\frac{\partial\mathcal{U}_{i}}{\partial \varphi_{i+2}}\right)+\ldots+\frac{1}{r_{l}^{2}S_{i+l}^{2}S_{i+2}^{2}}\frac{\partial}{\partial \varphi_{i+2}}\left(S_{i+2}^{\lambda_{i+2}}\frac{\partial\mathcal{U}_{i}}{\partial \varphi_{i+2}}\right)+\ldots+\frac{1}{r_{l}^{2}S_{i+l}^{2}S_{i+2}^{2}}\frac{\partial}{\partial \varphi_{i+2}}\left(S_{i+2}^{\lambda_{i+2}}\frac{\partial\mathcal{U}_{i}}{\partial \varphi_{i+2}}\right)+\frac{1}{r_{l}^{2}S_{i+1}^{2}S$$

$$\begin{split} &+\frac{1}{r_{l}^{2}S_{i+l}^{2}S_{i+2}^{2}...S_{\lambda_{i+2}}^{2}S_{\lambda_{i+1}}^{2}}\frac{\partial}{\partial\varphi_{\lambda_{i+l}}}\left(S_{\lambda_{i+l}}^{2}\frac{\partial\mathcal{U}_{i}}{\partial\varphi_{\lambda_{i+l}}}\right) + \frac{1}{r_{l}^{2}S_{i+1}^{2}S_{i+2}^{2}...S_{\lambda_{i+2}}^{2}S_{\lambda_{i}}^{2}S_{\lambda_{i}}}\frac{\partial}{\partial\varphi_{\lambda_{i}}}\left(S_{\lambda_{i}}\frac{\partial\mathcal{U}_{i}}{\partial\varphi_{\lambda_{i}}}\right) + \\ &-\frac{1}{r_{l}^{2}S_{i+1}^{2}S_{i+2}^{2}...S_{\lambda_{i+2}}^{2}S_{\lambda_{i+2}}^{2}S_{\lambda_{i+1}}^{2}S_{\lambda_{i}}^{2}}\frac{\partial^{2}\mathcal{U}_{i}}{\partial\varphi_{D}^{2}} + m_{i}^{2}\mathcal{U}_{i} = 0, \end{split}$$

где $S_i = sin\varphi_i$, методом разделения переменных, полагая

$$L_i(r_1, \varphi_{i+1}, ..., \varphi_D) = u_i(r_1)L_{i+1}(\varphi_{i+1}, \varphi_{i+2}, ..., \varphi_D)$$
.

В результате имеем

$$\frac{\mathcal{L}_{i+1}}{r_i^{\lambda_i}}\frac{d}{dr_i}\left(r_i^{\lambda_i}\frac{du_i}{dr_i}\right) + \frac{u_i^2}{r_i^2}\mathcal{L}_{i+1}\mathcal{L}_{i+1} + m_i^2u_i\mathcal{L}_{i+1} = 0$$

или

$$\frac{\left(r_{l}^{\lambda_{i}}u_{i}'\right)'+m_{i}^{2}r_{l}^{\lambda_{i}}u_{i}}{r_{l}^{\lambda_{i+1}}u_{i}}=-\frac{\mathcal{I}_{i+1}\mathcal{I}_{i+1}}{\mathcal{I}_{i+1}}=m_{i+1}(m_{i+1}+\lambda_{i+1}),$$

т.е., полагая i=1, получим систему двух уравнений,:

$$\begin{cases} \mathcal{L}_{i+1}\mathcal{L}_{i+1} + m_{i+1}(m_{i+1} + \lambda_{i+1})\mathcal{L}_{i+1} = 0, \\ \frac{1}{r_i}(r_i^{\lambda_i}u_i') + \left(m_i^2 - \frac{m_{i+1}(m_{i+1} + \lambda_{i+1})}{r_i^2}\right)u_i = 0. \end{cases}$$

Подстановка $x_i = m_i r_l$ $y_i = u_i x_i^{\lambda_{i+l}/2}$, во второе из них приводит к уравнению Бесселя порядка $m_{i+l} + \lambda_{i+l}/2$:

$$\frac{d^2 y_i}{dx_i^2} + \frac{1}{x_i} \frac{dy_i}{dx_I} + \left(1 - \frac{\left(m_{i+1} + \lambda_{i+1}/2\right)^2}{x_i^2}\right) y_i = 0$$

или

$$\frac{1}{x_i} \frac{d}{dx_i} \left(x_i \frac{dy_i}{dx_i} \right) + \left(1 - \frac{\left(m_{i+1} + \lambda_{i+1}/2 \right)^2}{x_i^2} \right) y_i = 0,$$

т.е. к цилиндрическим функциям порядка $m_{i+1} + \lambda_{i+1}/2$.

Решения первого уравнения системы

$$\mathcal{L}_{i+1}\mathcal{L}_{i+1} + m_{i+1}(m_{i+1} + \lambda_{i+1})\mathcal{L}_{i+1} = 0,$$

при

$$II_{i+1} = II_{i+1}(\varphi_{i+1},...,\varphi_D),$$

будем искать методом разделения переменных

$$U_{i+1}(\varphi_{i+1},...,\varphi_D) = \psi_{i+1}(\varphi_{i+1})\Phi_{i+2}(\varphi_{i+1},...,\varphi_D)$$

В результате имеем

$$\frac{\Phi_{i+2}}{\sin^{\lambda_{i+1}} \varphi_{i}} \frac{d}{d\varphi_{i}} \left(\sin^{\lambda_{i+1}} \varphi_{i+1} \frac{d\psi_{i+1}}{d\varphi_{i+1}} \right) + \frac{\psi_{i+1}}{\sin^{i+1} \varphi_{i}} \Delta_{i+2} \Phi_{i+2} + m_{i+1} \left(m_{i+1} + \lambda_{i+1} \right) \cdot \psi_{i+1} \Phi_{i+2} = 0$$

или

$$\frac{\left(\sin^{\lambda_{i+1}}\varphi_{i}u_{i}'\right)'+m_{i}(m_{i}+\lambda_{i+1})\sin^{\lambda_{i+1}}\varphi_{i}u_{i}}{\sin^{\lambda_{i+3}}\varphi_{i}u_{i}}=-\frac{\mathcal{I}_{i+2}\mathcal{I}_{i+2}}{\mathcal{I}_{i+2}}=m_{i+2}(m_{i+2}+\lambda_{i+2}),$$

т.е., при i=1, получим систему двух уравнений:

$$\begin{cases} \Delta_{i+1} \boldsymbol{\Phi}_{i+1} + m_{i+1} \left(m_{i+1} + \lambda_{i+1} \right) \boldsymbol{\Phi}_{i+1} = 0, \\ \frac{1}{\sin^{\lambda_i} \boldsymbol{\varphi}_i} \left(\sin^{\lambda_i} \boldsymbol{\varphi}_i \boldsymbol{\psi}_i' \right)' + \left(m_i \left(m_i + \lambda_i \right) - \frac{m_{i+1} \left(m_{i+1} + \lambda_{i+1} \right)}{\sin^i \boldsymbol{\varphi}_i} \right) \boldsymbol{\psi}_i = 0. \end{cases}$$

Вводя переменную $x_i = \cos \varphi_i$ и обозначая $V_i(x_i) = u_i(\varphi_i)$ из второго уравнения, получим соотношение

$$\frac{d}{dx_{i}}\left(\left(1-x_{i}^{2}\right)^{3}\frac{dV_{i}}{dx_{i}}\right)+\left(1-x_{i}^{2}\right)^{2}\left(\left(m_{i}\left(m_{i}+\lambda_{i}\right)-\frac{m_{i+1}\left(m_{i+1}+\lambda_{i+1}\right)}{1-x_{i}^{2}}\right)\right)V_{i}=0.$$

Это уравнение может рассматриваться как частный случай более общего уравнения

$$\frac{d}{dx_{i}}\left(1-x_{i}^{2}\right)^{\lambda_{i+2}}\frac{dV_{j}}{dx_{i}}+\left(1-x_{i}^{2}\right)^{\lambda_{i+3}}\left(m_{i}\left(m_{i}+n_{i}\right)-\frac{m_{i+1}\left(m_{i+1}+n_{i+1}\right)}{1-x_{i}^{2}}\right)V_{i}=0,$$

для которого подстановка $V_i(x) = \left(I - x_i^2\right)^{\frac{m_{i+1}}{2}} y_i(x)$, $V_i(\pm 1) \neq 0$, дает

$$(1-x_i^2)\frac{d^2y_i}{dx_i^2} - (2m_{i+1} + n_i + 1)x_i\frac{dy_i}{dx_i} + (m_i - m_{i+1})(m_i + m_{i+1} + n_i)y_i = 0,$$

$$y_i(\pm 1) \neq 0.$$

Обозначив далее $2m_{i+1} + \lambda_i = 2\alpha_i$ и $m_i - m_{i+1} = n_i$, получим уравнение

$$(1-x_i^2)\frac{d^2y_i}{dx_i^2} - (2\alpha_i + 1)x_i\frac{dy_i}{dx_i} + n_i(n_i + 2\alpha_i)y_i = 0.$$

Одним из решений этого дифференциального уравнения являются функции Гегенбауэра, выражаемые через гипергеометрическую и Гамма функции

$$C_{n_{i}}^{\alpha_{i}}(x_{i}) = \frac{\Gamma(n_{i} + 2\alpha_{i})}{\Gamma(n_{i} + 1)\Gamma(2\alpha_{i})} F(n_{i} + 2\alpha_{i}; -n_{i}; \alpha_{i} + \frac{1}{2}; \frac{1 - x_{i}}{2}), \quad n_{i} = 0, 1, 2, \dots$$

как многочлены при значениях n_i с коэффициентами при h^{n_i} в разложении функции $\left(1-2hx+h^2\right)^{\alpha_i}$ по степеням h:

$$\left(I - 2hx + h^2\right)^{\alpha_i} = \sum_{n=0}^{\infty} C_{n_i}^{\alpha_i} (x_i) h^{n_i}$$

В частности, при i=2, $\lambda_2=D-2$, имеем

$$(1 - x_2^2) \frac{d^2 y_2}{dx_2^2} - (2a_2 + 1)x_2 \frac{dy_2}{dx_2} + n_2(n_2 + 2\alpha_2)y_2 = 0, y_2(\pm 1) \neq 0$$

и, следовательно,

$$n_2 = m_2 - m_3;$$
 $m_2 = \alpha_2 + n_2 - \frac{\lambda_2}{2};$ $\alpha_2 = m_3 + \frac{\lambda_2}{2};$ $m_3 = \alpha_2 - \frac{\lambda_2}{2};$

так что

$$C_{n_2}^{\alpha_2}(x_2) = \frac{\Gamma(n_2 + 2\alpha_2)}{\Gamma(n_2 + 1)\Gamma(2\alpha_2)} \times F(n_2 + 2\alpha_2; -n_2; \alpha_2 + \frac{1}{2}; \frac{1 - x_2}{2}), n_2 = 0, 1, 2, \dots$$

Решения первого уравнения системы

$$\mathcal{L}_{i+1}\mathcal{L}_{i+1} + m_{i+1}(m_{i+1} + \lambda_{i+1})\mathcal{L}_{i+1} = 0,$$

при

$$\mathcal{L}_{i+1} = \mathcal{L}_{i+1}(\varphi_{i+1},...,\varphi_D),$$

будем искать методом разделения переменных

$$\mathcal{U}_{i+1}(\varphi_{i+1},...,\varphi_D) = \psi_{i+1}(\varphi_{i+1})\Phi_{i+2}(\varphi_{i+1},...,\varphi_D)$$
.

В результате имеем

$$\frac{\Phi_{i+2}}{\sin^{\lambda_{i+1}} \varphi_{i}} \frac{d}{d\varphi_{i}} \left(\sin^{\lambda_{i+1}} \varphi_{i+1} \frac{d\psi_{i+1}}{d\varphi_{i+1}} \right) + \frac{\psi_{i+1}}{\sin^{i+1} \varphi_{i}} \Delta_{i+2} \Phi_{i+2} + m_{i+1} \left(m_{i+1} + \lambda_{i+1} \right) \cdot \psi_{i+1} \Phi_{i+2} = 0$$

ИЛИ

$$\frac{\left(\sin^{\lambda_{i+1}}\varphi_{i}u_{i}'\right)'+m_{i}(m_{i}+\lambda_{i+1})\sin^{\lambda_{i+1}}\varphi_{i}u_{i}}{\sin^{\lambda_{i+3}}\varphi_{i}u_{i}}=-\frac{\mathcal{I}_{i+2}\mathcal{I}_{i+2}}{\mathcal{I}_{i+2}}=m_{i+2}(m_{i+2}+\lambda_{i+2}),$$

т.е., полагая i=3, получим систему двух уравнений:

$$\begin{cases}
\Delta_{i+I} \boldsymbol{\Phi}_{i+I} + m_{i+I} \left(m_{i+I} + \lambda_{i+I} \right) \boldsymbol{\Phi}_{i+I} = 0, \\
\frac{1}{\sin^{\lambda_i} \boldsymbol{\varphi}_i} \left(\sin^{\lambda_i} \boldsymbol{\varphi}_i \boldsymbol{\psi}_i' \right)' + \left(m_i \left(m_i + \lambda_i \right) - \frac{m_{i+I} \left(m_{i+I} + \lambda_{i+I} \right)}{\sin^i \boldsymbol{\varphi}_i} \right) \boldsymbol{\psi}_i = 0.
\end{cases}$$

Вводя переменную $x_i = \cos \varphi_i$ и обозначая $V_i(x_i) = u_i(\varphi_i)$ из второго уравнения, получим соотношение

$$\frac{d}{dx_{i}}\left(\left(1-x_{i}^{2}\right)^{3}\frac{dV_{i}}{dx_{i}}\right)+\left(1-x_{i}^{2}\right)^{2}\left(\left(m_{i}\left(m_{i}+\lambda_{i}\right)-\frac{m_{i+1}\left(m_{i+1}+\lambda_{i+1}\right)}{1-x_{i}^{2}}\right)\right)V_{i}=0.$$

Это уравнение может рассматриваться как частный случай более общего уравнения

$$\frac{d}{dx_{i}}\left(1-x_{i}^{2}\right)^{\lambda_{i+2}}\frac{dV_{j}}{dx_{i}}+\left(1-x_{i}^{2}\right)^{\lambda_{i+3}}\left(m_{i}\left(m_{i}+n_{i}\right)-\frac{m_{i+1}\left(m_{i+1}+n_{i+1}\right)}{1-x_{i}^{2}}\right)V_{i}=0,$$

для которого подстановка $V_i(x) = \left(I - x_i^2\right)^{\frac{m_{i+1}}{2}} y_i(x)$, $V_i(\pm I) \neq 0$, дает

$$(1-x_i^2)\frac{d^2y_i}{dx_i^2} - (2m_{i+1} + n_i + 1)x_i\frac{dy_i}{dx_i} + (m_i - m_{i+1})(m_i + m_{i+1} + n_i)y_i = 0,$$

$$y_i(\pm 1) \neq 0.$$

Обозначив далее $2m_{i+1} + \lambda_i = 2\alpha_i$ и $m_i - m_{i+1} = n_i$ получим уравнение

$$(1 - x_i^2) \frac{d^2 y_i}{dx_i^2} - (2\alpha_i + 1) x_i \frac{dy_i}{dx_i} + n_i (n_i + 2\alpha_i) y_i = 0.$$

Одним из решений этого дифференциального уравнения являются функции Гегенбауэра, выражаемые через гипергеометрическую и Гамма функции

$$C_{n_{i}}^{\alpha_{i}}(x_{i}) = \frac{\Gamma(n_{i} + 2\alpha_{i})}{\Gamma(n_{i} + 1)\Gamma(2\alpha_{i})} F(n_{i} + 2\alpha_{i}; -n_{i}; \alpha_{i} + \frac{1}{2}; \frac{1 - x_{i}}{2}), \quad n_{i} = 0, 1, 2, \dots$$

как многочлены при значениях n_i с коэффициентами при h^{n_i} в разложении функции $\left(I - 2hx + h^2 \right)^{\alpha_i}$ по степеням h:

$$\left(I - 2hx + h^2\right)^{\alpha_i} = \sum_{n=0}^{\infty} C_{n_i}^{\alpha_i}(x_i)h^{n_i}$$

При i = 3, $\lambda_3 = D - 3$, имеем

$$(1 - x_3^2) \frac{d^2 y_3}{dx_3^2} - (2a_3 + 1)x_3 \frac{dy_3}{dx_3} + n_3(n_3 + \lambda_3)y_3 = 0, \qquad y_3(\pm 1) \neq 0$$

и, следовательно,

$$n_{3} = m_{3} - m_{4};$$
 $m_{3} = \alpha_{3} + n_{3} - \frac{\lambda_{3}}{2};$ $\alpha_{3} = m_{4} + \frac{\lambda_{3}}{2};$ $m_{4} = \alpha_{3} - \frac{\lambda_{3}}{2};$

так что

$$C_{n_3}^{\alpha_3}(x_3) = \frac{\Gamma(n_3 + 2\alpha_3)}{\Gamma(n_2 + 1)\Gamma(2\alpha_2)} \times F(n_3 + 2\alpha_3; -n_3; \alpha_3 + \frac{1}{2}; \frac{1 - x_3}{2}), \quad n_3 = 0, 1, 2, \dots$$

Аналогичным образом получаются решения подобных уравнений при i = 4, 5, ..., D-2; $\lambda_4, \lambda_5, \ldots, \lambda_{D-2,\ldots}$

Решение уравнения $\mathcal{L}_{D-2}\mathcal{L}_{D-2} + m_{D-2}(m_{D-2}+2)\mathcal{L}_{D-2} = 0$, $\mathcal{L}_{D-2} = \mathcal{L}_{D-2}(\varphi_{D-2},...,\varphi_D)$ будем искать методом разделения переменных, т.е

$$\Delta_{D-2}\mathcal{U}_{D-2}(\varphi_{D-2},...,\varphi_D) = u_{D-1}(\varphi_{D-1})\mathcal{U}_{D-1}(\varphi_{D-1},\varphi_D).$$

$$\frac{\boldsymbol{\Phi}_{D-l}}{\sin^2 \varphi_{D-2}} \frac{d}{d\varphi_{D-2}} \left((\sin^2 \varphi_{D-2} \frac{d\psi_{D-2}}{d\varphi_{D-2}}) \right) + \frac{\psi_{D-2}}{\sin^2 \varphi_{D-2}} \Delta_{D-l} \boldsymbol{\Phi}_{D-l} + m_{D-2} (m_{D-2} + 2) \cdot \psi_{D-2} \boldsymbol{\Phi}_{D-l} = 0$$

или

$$\frac{\left(\sin^2\phi_{D-2}u'_{D-2}\right)'+m_{D-2}(m_{D-2}+2)\sin^2\phi_{D-2}u_{D-2}}{\sin^0\phi_{D-2}u_{D-2}} = \frac{\mathcal{A}_{D-1}\mathcal{U}_{D-1}}{\mathcal{U}_{D-1}} = m_{D-1}(m_{D-1}+1),$$

т.е., при i = D-2, систему двух уравнений:

$$\begin{cases}
\Delta_{D-1} \Phi_{D-1} + m_{D-1} (m_{D-1} + 1) \Phi_{D-1} = 0, \\
\frac{1}{\sin^2 \phi_{D-2}} \left(\sin^2 \phi_{D-2} \psi'_{D-2} \right)' + \left(m_{D-2} (m_{D-2} + 2) - \frac{m_{D-1} (m_{D-1} + 1)}{\sin^2 \phi_{D-2}} \right) \psi_{D-2} = 0.
\end{cases}$$

переменную $x_{D-2} = \cos \varphi_{D-2}$ после рассмотренных выше преобразований, получим при $\lambda_{D-2} = 2$

$$(1 - x_{D-2}^2) \frac{d^2 y_{D-2}}{dx_{D-2}^2} - (2m_{D-1} + n_{D-1} + 1) x_{D-2} \frac{dy_{D-2}}{dx_{D-2}} + (m_{D-2} - m_{D-1}) (m_{D-2} + m_{D-1} + 2) y_{D-2} = 0,$$

и, следовательно,
$$2m_{D-I}+\lambda_{D-2}=2\alpha_{D-2}$$
 и $m_{D-2}-m_{D-I}=n_i$, так что
$$\mathbf{C}_{\mathbf{n}_i}^{\alpha_i}\!\left(\mathbf{x}_i\right)\!=\!\frac{\Gamma\!\left(\mathbf{n}_i+2\alpha_i\right)}{\Gamma\!\left(\mathbf{n}_i+1\right)\!\Gamma\!\left(2\alpha_i\right)}\!\!\times\!\mathbf{F}\!\left(\mathbf{n}_i+2\alpha_i;\!-\mathbf{n}_i;\!\alpha_i+\frac{1}{2};\!\frac{1-\mathbf{x}_i}{2}\right),\!\mathbf{n}_i=0,\!1,\!2,\!\dots$$

В частности, при i = D - 2, $\lambda_{D-2} = 2$, имеем

$$\left(1 - x_{D-2}^2\right) \frac{d^2 y_{D-2}}{dx_{D-2}^2} - \left(2a_{D-2} + I\right) x_{D-2} \frac{dy_{D-2}}{dx_{D-2}} + n_{D-2} (n_{D-2} + D - 2) y_{D-2} = 0, \qquad y_{D-2} \left(\pm I\right) \neq 0$$

и, следовательно,

$$\begin{split} n_{D-2} &= m_{D-2} - m_{D-1}; & m_{D-2} &= \alpha_{D-2} + n_{D-2} - \frac{\lambda_{D-2}}{2}; \\ \alpha_{D-2} &= m_{D-2} + \frac{\lambda_{D-2}}{2}; & m_{D-2} &= \alpha_{D-2} - \frac{\lambda_{D-2}}{2}; \end{split}$$

так что

$$C_{n_{D-2}}^{\alpha_{D-2}}\left(x_{D-2}\right) = \frac{\Gamma\left(n_{D-2} + 2\alpha_{D-2}\right)}{\Gamma\left(n_{D-2} + 1\right)\Gamma\left(2\alpha_{D-2}\right)} \times F(n_{D-2} + 2\alpha_{D-2}; -n_{D-2}; \alpha_{D-2} + \frac{1}{2}; \frac{1 - x_{D-2}}{2}), n_{D-2} = 0, 1, 2, \dots$$

Решение уравнения $\mathcal{L}_{D-l}\mathcal{L}_{D-l} + m_{D-l}(m_{D-l}+l)\mathcal{L}_{D-l} = 0,$ $\mathcal{L}_{D-l} = \mathcal{L}_{D-l}(\varphi_{D-l},\varphi_D)$ будем искать методом разделения переменных

$$\mathcal{U}_{D-1}(\varphi_{D-1},\varphi_{D}) = u_{D-1}(\varphi_{D-1})\mathcal{U}_{D}(\varphi_{D}).$$

В результате имеем

$$\frac{\Phi_{D}}{\sin \varphi_{D-1}} \frac{d}{d\varphi_{D-1}} \left((\sin \varphi_{D-1} \frac{d\psi_{D-1}}{d\varphi_{D-1}}) \right) + \frac{\psi_{D-1}}{\sin^2 \varphi_{D-1}} \Delta_D \Phi_D + m_{D-1} (m_{D-1} + 1) \cdot \psi_{D-1} \Phi_D = 0$$

ИЛИ

$$\frac{\left(\sin\phi_{D-l}u'_{D-l}\right)' + m_{D-l}(m_{D-l} + 1)\sin\phi_{D-l}u_{D-l}}{\sin^{-l}\phi_{D-l}u_{D-l}} = \frac{\mathcal{A}_{D}\mathcal{U}_{D}}{\mathcal{U}_{D}} = m_{D}(m_{D} + 0),$$

т.е., полагая i=D-1, имеем систему двух уравнений:

$$\begin{cases} \Delta_{D} \Phi_{D} + m_{D} (m_{D} + 0) \Phi_{D} = 0, \\ \frac{1}{\sin \phi_{D-l}} (\sin \phi_{D-l} \psi'_{D-l})' + \left(m_{D-l} (m_{D-l} + 1) - \frac{m_{D} (m_{D} + 0)}{\sin^{2} \phi_{D-l}} \right) \psi_{D-l} = 0. \end{cases}$$

Вводя переменную $x_{D-I} = cos \varphi_{D-I}$ после рассмотренных выше преобразований получим, при $\lambda_{D-I} = I$

$$(1 - x_{D-l}^2) \frac{d^2 y_{D-l}}{dx_{D-l}^2} - (2m_D + n_D + 1) x_{D-l} \frac{dy_{D-l}}{dx_{D-l}} + (m_{D-l} - m_D) (m_{D-l} + m_D + 1) y_{D-l} = 0,$$

и, следовательно, $2m_{_{\! D}}+\lambda_{_{\! D\!-\! I}}=2\alpha_{_{\! D\!-\! I}}$ и $m_{_{\! D\!-\! I}}$ - $m_{_{\! D}}=n_{_{\! D\!-\! I}}$, так что

$$C_{n_{D-I}}^{\alpha_{D-I}}(x_{D-I}) = \frac{\Gamma(n_{D-I} + 2\alpha_{D-I})}{\Gamma(n_{D-I} + I)\Gamma(2\alpha_{D-I})} \times F(n_{D-I} + 2\alpha_{D-I}; -n_{D-I}; \alpha_{D-I} + \frac{1}{2}; \frac{1 - x_{D-I}}{2}), n_{D-I} = 0, 1, 2, \dots$$

что соответствует решению уравнения Лежандра.

Таким образом, найдено решение n-мерного уравнения Гельмгольца. Аналогичным образом можно найти решение других многомерных уравнений в частных производных — уравнения Лапласа, волнового уравнения, уравнения теплопроводности, диффузии и др.

Литература

- 1. Бейтмен Г. и Эрдейи А. Высшие трансцендентные функции, в трех томах, том II, М.- СМБ, «Наука»,1974, 295 с.
- 2. Коротков А. В. Элементы семимерного векторного исчисления. Алгебра. Геометрия. Теория поля. Новочеркасск: Набла, 1996. 244 с.
- 3. Коротков А. В. Решения семимерного уравнения Гельмгольца [2]. Новочеркасск: Набла, 1996. 238-243 с.
- **4.** Коротков А. В. Элементы пятнадцатимерного векторного исчисления. Новочеркасск: Изд-во "НОК", 2011. 36с.

Раздел 2

Глава 4. О построении числовых последовательностей

©2013г., А.В. Коротков

Международный центр теоретической физики (2^n -1-D технологии), г. Новочеркасск

$$\begin{vmatrix} 3-D & 2^m-1 & 2n+1 \\ 2n+1 & 7-D & 2^m-1 \\ 2^m-1 & 2n+1 & 15-D \end{vmatrix}$$

Проблема разложения в степенные ряды различных функций связана, зачастую, с тем обстоятельством, что отсутствует дифференциальное уравнение, соответствующее этим степенным рядам, т.е. наличие многочлена не определяет производящую функцию, так что приходиться действовать в обратном порядке: по предлагаемой производящей функции следует отыскивать разложение в степенные ряды. Вместе с тем, даже числовые последовательности определяют зачастую серьёзные приложения. Например, определение последовательности гипотенуз прямоугольных треугольников с определенной разностью длин катетов[3]. Так, для разности длин катетов прямоугольных треугольников равной единице, имеем последовательность гипотенуз:

В связи с этим, желательно найти порядок получения производящей функции по известному ряду. Будем рассматривать функции, которые формируются наиболее простыми выражениями, как самой функции, так и её производных.

К таким функциям, прежде всего, следует отнести показательную функцию с алгебраической суммой экспоненциальных величин различной степени

$$y = e^{x}(e^{x} - n) + 0e^{2x};$$

$$y' = e^{x}(e^{x} - n) + 1e^{2x};$$

$$y'' = e^{x}(e^{x} - n) + 3e^{2x};$$

$$y''' = e^{x}(e^{x} - n) + 7e^{2x}.$$

Уже эти формулы показывают, что с экспоненциальными функциями связана последовательность вида:

$$\dots, -\frac{15}{16}, -\frac{7}{8}, -\frac{3}{4}, -\frac{1}{2}, 0, 1, 3, 7, 15, \dots, 2^n - 1, \dots$$

Эта последовательность принципиально важна для определения размерности многомерных векторных алгебр, а также совершенных чисел. Она соответствует рекуррентному соотношению

$$P_{n+1}(0) = 3P_n(0) - 2P_{n-1}(0)$$

Так, что достаточно простыми средствами решается задача нахождения числовых последовательностей и рекуррентных связей.

Указанным функциям соответствует дифференциальное уравнение вида y'' - (k+1)y' + ky = 0,

т.е., при k=2:

$$y'' - 3y' + 2y = (e^{x}(e^{x} - n) + 3e^{2x}) - 3(e^{x}(e^{x} - n) + 1e^{2x}) + 2e^{x}(e^{x} - n) = 0,$$

что обусловлено относительно простым видом производящей функции.

Эти последовательности в свою очередь формируют разности величин dy''' - 3dy'' + 2dy' = (y''' - y'') - 3(y'' - y') + 2(y' - y) = 0,

которым соответствует то же дифференциальное уравнение, однако, они дают существенно отличающийся степенной ряд

...,
$$-\frac{1}{64}$$
, $-\frac{1}{32}$, $-\frac{1}{16}$, $-\frac{1}{8}$, $-\frac{1}{4}$, $-\frac{1}{2}$, 1, 2, 4, 8, 16, 32, 64,..., 2^n ,...

Эта последовательность также важна для определения размерности многомерных векторных алгебр и совершенных чисел. Она соответствует рекуррентному соотношению

$$P_{n+1}(0) = 3P_n(0) - 2P_{n-1}(0)$$

однако разностный степенной ряд теперь совпадает с самим рядом.

Покажем результат разности двух степенных рядов, указанных ранее

$$e^{2x} = I + \frac{(2x)^{1}}{1!} + \frac{(2x)^{2}}{2!} + \frac{(2x)^{3}}{3!} + \frac{(2x)^{4}}{4!} + \frac{(2x)^{5}}{5!} + \frac{(2x)^{6}}{6!} + \cdots$$

$$e^{x} = I + \frac{(x)^{1}}{1!} + \frac{(x)^{2}}{2!} + \frac{(x)^{3}}{3!} + \frac{(x)^{4}}{4!} + \frac{(x)^{5}}{5!} + \frac{(x)^{6}}{6!} + \cdots$$

$$e^{2x} - e^{x} = 0 + 1 * \frac{(x)^{1}}{1!} + 3 * \frac{(x)^{2}}{2!} + 7 * \frac{(x)^{3}}{3!} + 15 * \frac{(x)^{4}}{4!} + 31 * \frac{(x)^{5}}{5!} + 63 * \frac{(x)^{6}}{6!} + \cdots$$

Отметим, что если определить закон умножения (и сложения) рассмотренного выше ряда чисел в виде

$$(a \otimes b)=(ab)+(a+b),$$

 $(a \oplus b)=(a+b)+(ab),$
 $(a \otimes b)=(a \oplus b),$

то таблица умножения (и сложения) определяется числами того же ряда

Таблица 1

табл	таблица умножения и сложения чисел ряда $P_n(0)$											
$n \ m$	1	3	7	15	31	63	127	255	511			
1	3	7	15	31	63	127	255	511	•••			
3	7	15	31	63	127	255	511	• • •	• • •			
7	15	31	63	127	255	511	• • •	• • •	• • •			
15	31	63	127	255	511	• • •	• • •	• • •	• • •			
31	63	127	255	511	•••		• • •	• • •	•••			
63	127	255	511	• • •	• • •	• • •	• • •	• • •	• • •			
127	255	511	• • •	• • •	• • •	• • •	• • •	• • •	• • •			
255	511		•••	• • •	• • •		• • •	• • •	•••			
511	•••		•••	•••		• • •	• • •	• • •	•••			

Рассмотрим функцию, $y = e^{2x}(e^x - n)$ с алгебраической суммой экспоненциальных функций, имеющей вид:

$$y = e^{2x}(e^{x} - n) + 0e^{3x};$$

$$y' = e^{2x}(e^{x} - n) + 2e^{3x};$$

$$y'' = e^{2x}(e^{x} - n) + 8e^{3x};$$

$$y''' = e^{2x}(e^{x} - n) + 26e^{3x};$$

$$y^{(IV)} = e^{2x}(e^{x} - n) + 80e^{3x};$$

Уже эти формулы показывают, что с этими экспоненциальными функциями связаны последовательности вида:

$$\dots, \frac{80}{3}, \frac{26}{3}, \frac{8}{3}, \frac{2}{3}, 0, 2, 8, 26, 80, \dots, 3^{n} - 1 \dots,$$

соответствующие дифференциальному уравнению

$$y'' - (k+1)y' + ky = 0;$$
 $k=3,$

т.е.

$$y'' - 4y' + 3y = \left(e^{2x}\left(e^x - n\right) + 8e^{3x}\right) - 4\left(e^{2x}\left(e^x - n\right) + 2e^{3x}\right) + 3e^{2x}\left(e^x - n\right) = 0.$$

Эта последовательность используется довольно часто. Она соответствует рекуррентному соотношению

$$P_{n+1}(0)=4P_{n}(0)-3P_{n-1}(0)$$

или

$$y'' - 4y' + 3y = 0.$$

Указанным функциям соответствует обыкновенное дифференциальное уравнение второго порядка с постоянными коэффициентами, что обусловлено относительно простым видом производящей функции.

Рассмотренные последовательности в свою очередь формируют разности величин:

$$dy''' - 4dy'' + 3dy' = (y''' - y'') - 4(y'' - y') + 3(y' - y) = 0,$$

которым соответствует тоже дифференциальное уравнение,

$$dy'' - (k+1)dy' + kdy = 0,$$
 $k = 3,$

однако, они дают существенно отличающийся степенной ряд

...,
$$\frac{2}{3^4}$$
, $\frac{2}{3^3}$, $\frac{2}{3^2}$, $\frac{2}{3^1}$, 2, 6, 18, 54,...., $2*3^n$,...

так, что достаточно простыми средствами решается задача нахождения числовых последовательностей и рекуррентных связей.

Эта последовательность также широко используется на практике. Она соответствует рекуррентному соотношению

$$P_{n+1}(0)=4P_{n}(0)-3P_{n-1}(0)*$$

или дифференциальному уравнению

$$y'' - 4y' + 3y = 0.$$

Определим результат разности двух степенных рядов, указанных ранее

$$e^{3x} = 1 + \frac{(3x)^{1}}{1!} + \frac{(3x)^{2}}{2!} + \frac{(3x)^{3}}{3!} + \frac{(3x)^{4}}{4!} + \frac{(3x)^{5}}{5!} + \frac{(3x)^{6}}{6!} + \cdots$$

$$e^{x} = 1 + \frac{(x)^{1}}{1!} + \frac{(x)^{2}}{2!} + \frac{(x)^{3}}{3!} + \frac{(x)^{4}}{4!} + \frac{(x)^{5}}{5!} + \frac{(x)^{6}}{6!} + \cdots$$

$$e^{3x} - e^{x} = 0 + 2 * \frac{(x)^{1}}{1!} + 8 * \frac{(x)2}{2!} + 26 * \frac{(x)^{3}}{3!} + 80 * \frac{(x)^{4}}{4!} + 242 * \frac{(x)^{5}}{5!} + 728 * \frac{(x)^{6}}{6!} + \cdots$$

Отметим, что если определить закон умножения (и сложения) рассмотренного выше ряда чисел в виде

$$(a \otimes b)=(ab)+(a+b),$$

 $(a \oplus b)=(a+b)+(ab),$
 $(a \otimes b)=(a \oplus b),$

то таблица умножения (сложения) определяется числами того же ряда(табл.2)

Таблица 2

	Т	аблица у	умноже	ния и сл	ожения	чисел р	яда P _n ((0)	
\	2	8	26	80	242	728	2186	6650	20042
2	8	26	80	242	728	2186	6650	20042	86818
8	26	80	242	728	2186	6650	20042	86818	
26	80	242	728	2186	6650	20042	86818	•••	
80	242	728	2186	6650	20042	86818	•••	•••	
242	728	2186	6650	20042	86818	•••	•••	•••	
728	2186	6650	20042	86818		•••	•••	•••	
2186	6650	20042	86818	•••	•••	•••	•••	•••	•••
6650	20042	86818				•••		•••	
20042	86818	•••	•••	• • •	• • •	• • •	• • •	• • •	• • •

Рассмотрим функцию, $y = e^{(k-1)x}(e^x - n)$ с алгебраической суммой экспоненциальных функций k-той степени, например:

$$y = e^{(k-1)x}(e^{x} - n) + (k^{0} - 1)e^{kx};$$

$$y' = e^{(k-1)x}(e^{x} - n) + (k^{1} - 1)e^{kx};$$

$$y'' = e^{(k-1)x}(e^{x} - n) + (k^{2} - 1)e^{kx};$$

$$y''' = e^{(k-1)x}(e^{x} - n) + (k^{3} - 1)6e^{kx};$$
...
$$y^{(k)} = e^{(k-1)x}(e^{x} - n) + (k^{(k)} - 1)e^{kx};$$

Уже эти формулы показывают, что с экспоненциальными функциями связаны последовательности вида:

...,
$$-\frac{k^{-3}-1}{k}$$
, $-\frac{k^{-2}-1}{k}$, $-\frac{k^{-1}-1}{k}$, 0, k^1-1 , k^2-1 , k^3-1 , ..., k^n-1 , ...,

а также дифференциальным уравнением

$$y'' - (k+1) y' + ky = 0$$

$$y'' - (k+1) y' + ky = 0$$

$$= (e^{(k-1)x} (e^x - n) + (k^2 - 1)e^{kx}) - (k+1) (e^{(k-1)x} (e^x - n) + ((k^1 - 1) e^{kx}) + ke^{(k-1)x} (e^x - n) = 0;$$

Эта последовательность также часто используется на практике, поскольку позволяет построить бесконечное число последовательностей. Она соответствует рекуррентному соотношению

$$P_{n+1}(0)=(k+1)P_n(0)-kP_{n-1}(0)$$

или дифференциальному уравнению

$$y''-(k+1)y'+ky=0.$$

Так, что достаточно простыми средствами решается задача нахождения числовых последовательностей и рекуррентных связей. Указанным функциям соответствует обыкновенное дифференциальное уравнение второго порядка с

постоянными коэффициентами, что обусловлено относительно простым видом производящей функции.

Эти последовательности в свою очередь формируют разности величин dy''' - (k+1)dy'' + ky' = (y''' - y'') - (k+1)(y'' - y') + k(y' - y) = 0,

которым соответствует тоже дифференциальное уравнение,

$$dy'' - (k+1)dy' + kdy = 0,$$

однако, они дают существенно отличающийся степенной ряд

...,
$$\frac{1}{k^4}$$
, $\frac{1}{k^3}$, $\frac{1}{k^2}$, $\frac{1}{k^1}$, k^0 , k^1 , k^2 , k^3 ..., k^n , ...

Эта последовательность также часто используется на практике. Она соответствует рекуррентному соотношению

$$P_{n+1}(0) = (k+1)P_n(0) - kP_{n-1}(0),$$

или дифференциальному уравнению

$$y''-(k+1)y'+ky=0.$$

Покажем результат разности двух степенных рядов, указанных ранее

$$e^{kx} = 1 + \frac{(kx)^{1}}{1!} + \frac{(kx)^{2}}{2!} + \frac{(kx)^{3}}{3!} + \frac{(kx)^{4}}{4!} + \frac{(kx)^{5}}{5!} + \dots$$

$$e^{x} = 1 + \frac{(x)^{1}}{1!} + \frac{(x)^{2}}{2!} + \frac{(x)^{3}}{3!} + \frac{(x)^{4}}{4!} + \frac{(x)^{5}}{5!} + \dots$$

$$e^{kx} - e^{x} = 0 + (k-1)\frac{(x)^{1}}{1!} + (k^{2}-1)\frac{(x)^{2}}{2!} + (k^{3}-1)\frac{(x)^{3}}{3!} + (k^{4}-1)\frac{(x)^{4}}{4!} + (k^{5}-1)\frac{(x)^{5}}{5!} \dots$$

Отметим, что если определить закон умножения (сложения) рассмотренного выше ряда чисел в виде

$$(a \otimes b)=(ab)+(a+b),$$

$$(a \oplus b)=(a+b)+(ab),$$

$$(a \otimes b)=(a \oplus b),$$

то таблица умножения (сложения) определяется числами того же ряда(табл.3)

Таблица 3

	,	таблица умножения и сложения чисел ряда P _n (0)									
$n \backslash m$	k^{I} -1	k^2 -1	k^3 -1	k^4 -1	k^{5} -1	k^6 -1	k^7 -1	k^8 -1	$k^{9}-1$		
1	-	k^3 -1						k^{9} -1	•••		
$k^{2}-1$	k^{3} -1	k^4 -1	k^{5} -1	k^{6} -1	k^{7} -1			•••	k^{m+n} -1		
		k^{5} -1				k^{9} -1	•••	k^{m+n} -1	•••		
		k^{6} -1				•••	k^{m+n} -1	•••	•••		
k^{5} -1	k^{6} -1	k^{7} -1	k^{8} -1	k^{9} -1	•••	k^{m+n} -1	•••	•••	•••		
k^{6} -1	k^{7} -1	k^{8} -1	k^{9} -1	•••	k^{m+n} -1	•••	•••	•••	•••		
k^7 -1	k^{8} -1	k^{9} -1	•••	k^{m+n} -1	•••	•••	•••	•••	•••		
k^{8} -1	k^{9} -1	•••	k^{m+n} -1	•••	•••	•••	•••	•••	•••		
k^{9} -1		k^{m+n} -1		•••	•••		•••	•••	•••		
k^{10} -1	k^{m+n} -1	•••					•••	•••	•••		

Таким образом, экспоненциальным функциям соответствуют достаточно простые дифференциальные уравнения и рекуррентные соотношения, при этом определяются бесконечные числовые последовательности, соответствующие дифференциальному уравнению

$$y^{(k)} - (k+1)y^{(k-1)} + ky^{(k-2)} = 0$$

или рекуррентному соотношению

$$P_{n+1}(0) = (k+1)P_n(0) - kP_{n-1}(0)$$

Рассмотренные примеры числовых последовательностей можно пытаться объединить между собой. Так, в табл.4 последовательности систематизированы по значению минимальной величины, равной n. В левом верхнем углу n=0, в правом верхнем углу n=1, в нижнем левом углу n=2, в нижнем правом n=3. Достоинством такой систематизации является одно и то же рекуррентное соотношение для каждого из секторов.

В табл.5 определен способ систематизации по рекуррентным соотношениям. Так, табл.5 соответствует рекуррентному соотношению

$$P_{n+1}(0) = 3P_n(0) - 2P_{n-1}(0),$$

а таблица 6 – рекуррентному соотношению

$$P_{n+1}(0) = 4P_n(0) - 3P_{n-1}(0)$$
.

Важным качеством таких таблиц является постоянство рекуррентных соотношений не только по столбцам, но и по строкам, а также строк последовательностей натурального ряда чисел.

На рис.1 показаны графики зависимости производящей функции

$$y = e^x (e^x - n),$$

при n=1, а также её начальных производных от переменной x. График показывает, что кривизна участков у всех производных одна и та же, т.е. плоскость рисунка делится на дискретные значения переменной x, аналогично способу систематизации таблиц 5 и 6.

Литература

- 1. Градштейн И.С., Рыжик И.М., Таблицы интегралов, сумм, рядов и произведений, «Наука», 1971.
- 2. Коротков А. В. Элементы классификации пифагоровых чисел. Новочеркасск: Набла, 2009. 73 с.
- 3. Коротков А. В. Элементы пятнадцатимерного векторного исчисления. Новочеркасск: Изд-во "HOK", 2011. 36с.

Физико-математические науки.

В статье рассматриваются вопросы построения последовательностей чисел Фибоначчи, а также возможностей установления связи между числами Пифагора и Фибоначчи. Приведены примеры построения числовых последовательностей с тройками Пифагора и тройками Фибоначчи. Показано наличие прочной связи пифагоровых троек и троек Фибоначчи, установлены соответствующие соотношения. В приложении приведены таблицы троек Пифагора, последовательностей Фибоначчи, троек чисел Фибоначчи-Пифагора и троек чисел Диофанта.

Коротков Анатолий Васильевич, к.т.н., д.ф.-м.н., доцент., акад. МАСИ.

Международный центр теоретической физики, г. Новочеркасск

adpec: avkorotkov1945@yandex.ru

Ключевые слова и фразы: тройки чисел Пифагора, тройки чисел Фибоначчи, связь чисел, числовые последовательности, числа Диофанта.

Последовательности Фибоначчи-Пифагора

©2013г., А.В. Коротков Международный центр теоретической физики (2^n -1-D технологии), г. Новочеркасск

$$\begin{vmatrix} 3-D & 2^m-1 & 2n+1 \\ 2n+1 & 7-D & 2^m-1 \\ 2^m-1 & 2n+1 & 15-D \end{vmatrix}$$

Знаменитая последовательность Фибоначчи [1], которая связывает тройку чисел соотношением $F_{n+1} = F_n + F_{n-1}$ и определяет третье число тройки как сумму двух предыдущих, имеет вид

$$0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,...$$

Такую же последовательность образует разность последующего члена F_{n+1} и предыдущего члена F_n , т.е. последовательность разности соседних чисел Фибоначчи совпадает с самой последовательностью Фибоначчи. Эта последовательность имеет отношение к так называемому золотому сечению, числа которого определяются величиной

$$p = \frac{1 + \sqrt{5}}{2} \approx 1,618034,$$

что определяется решением дифференциального уравнения

$$y'' - y' - y = 0,$$

$$p^2 - p - 1 = 0,$$
 $p_{1,2} = \frac{1 \pm \sqrt{1 + 4}}{2},$

причем решение уравнения имеет вид

$$y = c_1 e^{\frac{1+\sqrt{5}}{2}x} + c_2^{\frac{1-\sqrt{5}}{2}x} .$$

Привлекает значение отношения двух соседних чисел Фибоначчи, характеризуемое величиной $\Phi \approx 1,618034$ или обратной величиной, равной $\Phi^ \approx 0,618034$, которые определяются все с большей точностью с ростом чисел Фибоначчи, и стремятся к иррациональным величинам $p_{1,2} = \frac{1 \pm \sqrt{5}}{2}$. Важным тождеством является соотношение

$$F_{n+1} * F_{n-1} - F_n^2 = \pm 1$$
.

Отметим еще одно из важных свойств чисел Фибоначчи. Оно заключается в том, что последовательная тройка чисел Фибоначчи определяет, как не странно, пифагорову тройку. Это замечательное свойство определяет не только связь чисел Фибоначчи с числами Пифагора, но также устанавливает связь этих чисел с уравнением Диофанта, так что три знаменитых математика древности и средних веков работали над одной и той же проблемой. Вместе с тем, связь чисел Фибоначчи, троек Пифагора и уравнения Диофанта до сих пор не установлена. В связи с этим, следует проанализировать процесс построения пифагоровых троек на базе чисел Фибоначчи. Отметим, что были установлены соотношения трех чисел Пифагора (x_{n-1} , y_{n-1} , z_{n-1}) для прямоугольного треугольника с тройкой чисел (F_{n-1} , F_n , F_{n+1}) из последовательности Фибоначчи, причем

$$x_{n-1} = F_{n+1}^{2} - F_{n}^{2},$$

$$y_{n-1} = 2F_{n+1} * F_{n},$$

$$z_{n-1} = F_{n+1}^{2} + F_{n}^{2}.$$

Эти соотношения полностью определяют пифагоровы тройки по трем последовательным числам Фибоначчи, так что совокупности Фибоначчи соответствует три последовательности чисел (x,y,z) (табл.1).

Таблица 1

														оница 1
F	1	1	2	3	5	8	13	21	34	55	89	144	233	377
\boldsymbol{x}			1	3	10	27		186		1281	3355		22997	
	3	5	6	9	5	2	715	9	4896	5	3	87840	1	602069
y		1	3	8	<i>20</i>	<i>54</i>	<i>142</i>	<i>374</i>		<i>2563</i>	<i>6710</i>	<i>17568</i>	45994	120414
	4	2	0	0	8	6	8	0	9790	2	4	2	0	0
z		1	3	8	<i>23</i>	<i>61</i>	159	418	1094	2865	<i>7502</i>	19641	<i>51422</i>	134626
	5	3	4	9	3	0	7	1	6	7	5	8	9	9
	$F_{n+1}*F_{n-1}-F_n^2=\pm 1, z_{n+1}*z_{n-1}-z_n^2=\pm 1, \Delta_1=4=1^3*4$, базовые числа[1,2]													

Отметим, что последовательность Фибоначчи обладает не только уже указанным свойством $F_{n+1}*F_{n-1}-F_n^2=\pm 1$, например, $3*8-5^2=-1$, но и отношением $z_{n+1}*z_{n-1}-z_n^2=\pm 1$, например, $5*3-4^2=-1$, для всех чисел бесконечного ряда, причем имеют место рекуррентное соотношение $P_{n+1}=2*(P_n+P_{n-1})-P_{n-2}$. Это, отчасти, связано с определителем третьего порядка, составленным из трех соседних рядов троек Пифагора ряда Фибоначчи. Такой определитель равен 4 для всех соседних троек Пифагора, вплоть до самых больших чисел. Например,

$$\begin{vmatrix} 3 & 5 & 16 \\ 4 & 12 & 30 \\ 5 & 13 & 34 \end{vmatrix} = - \begin{vmatrix} 5 & 16 & 39 \\ 12 & 30 & 80 \\ 13 & 34 & 89 \end{vmatrix} = 4.$$

Вместе с тем, ряд чисел z состоит из чисел чересстрочной развертки последовательности Фибоначчи. Так что, числа Фибоначчи определяют последовательность прямоугольных треугольников, определяемых величиной гипотенузы в соответствии с чересстрочной разверткой чисел Фибоначчи 5, ..., 13, ..., 34, ..., 89,

Отметим особо, что эти последовательности бесконечны, однако, не включают целый ряд пифагоровых троек, даже с самыми малыми числовыми значениями, например, тройку (24, 7, 25) [2] (табл.2), а, следовательно, должен быть способ нахождения иных пифагоровых троек и иных последовательностей Фибоначчи. Более того, три соседних числа последовательности Фибоначчи определяют лишь одну из троек Пифагора. Так, числа Фибоначчи (1,1,2) определяют первую тройку Пифагора (3,4,5). Числа Фибоначчи (1,2,3) определяют вторую тройку Пифагора (5,12,13),... и т.д. до бесконечности.

Основополагающим признаком таких последовательностей должно быть удовлетворение соотношению $F_{n+1} = F_n + F_{n-1}$. В результате, каждый третий элемент последовательности должен определяться суммой двух предыдущих.

Этому условию удовлетворяет бесконечное число последовательностей, в которых задействованы совершенно иные числа, нежели в последовательности Фибоначчи, с другими парами базовых натуральных чисел, не стоящих рядом в последовательности Фибоначчи. Это показано в табл. 3. Базовые числа определяются табл.3.

Каждая из приведенных последовательностей может быть продолжена до бесконечности вправо, а четверки последовательностей (F, x , y , z) — до бесконечности вниз с помощью рекуррентного соотношения $z_{n+1} = 3(z_n - z_{n-1}) + z_{n-2}$, так что пифагоровых троек можно привести бесконечное множество. Если учитывать отрицательные значения чисел, то аналогично получается расширение последовательности до бесконечности влево и вверх. Аналогичная картина имеет место в последовательностях пифагоровых троек, следовательно, можно считать родственными тройки последовательности Фибоначчи (табл.1) и последовательностей

Тройки чисел (х,у,z) Пифагор							гора						ици 2			
$n \mid m$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	3	0	-5	-12	-21	-32	-45	-60	-77	-96	-117	-140	-165	-192	-221	-252
2	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64
	5	8	13	20	29	40	53	68	85	104	125	148	173	200	229	260
	8	5	0	-7	-16	-27	-40	-55	-72	-91	-112	-135	-160	-187	-216	-247
3	6	12	18	24	30	36	42	48	54	60	66	72	78	84	90	96
	10	13	18	25	34	45	58	73	90	109	130	153	178	205	234	265
	15	12	7	0	-9	-20	-33	-48	-65	-84	-105	-128	-153	-180	-209	-240
4	8	16	24	32	40	48	56	64	72	80	88	96	104	112	120	128
	17	20	25	32	41	52	65	80	97	116	137	160	185	212	241	272
	24	21	16	9	0	-11	-24	-39	-56	-75	-96	-119	-144	-171	-200	-231
5	10	20	30	40	50	60	70	80	90	100	110	120	130	140	<i>150</i>	160
	26	29	34	41	50	61	74	89	106	125	146	169	194	221	250	281
	35	32	27	20	11	0	-13	-28	-45	-64	-85	-108	-133	-160	-189	-220
6	12	24	36	48	60	72	84	96	108	120	132	144	156	168	180	192
	37	40	45	52	61	72	85	100	117	136	157	180	205	232	261	292
	48	45	40	33	24	13	0	-15	-32	-51	-72	-95	-120	-147	-176	-207
7	14	28	42	56	70	84	98	112	126	140	154	<i>168</i>	182	196	210	224
	50	53	58	65	74	85	98	113	130	149	170	193	218	245	274	305
	63	60	55	48	39	28	15	0	-17	-36	-57	-80	-105	-132	-161	-192
8	16	32	48	64	80	96	112	128	144	160	176	192	208	224	240	256
	65	68	73	80	89	100	113	128	145	164	185	208	233	260	289	320
	80	77	72	65	56	45	32	17	0	-19	-40	-63	-88	-115	-144	-175
9	18	36	54	72	90	108	126	144	162	180	198	216	234	252	270	288
	82	85	90	97	106	117	130	145	162	181	202	225	250	277	306	337
	99	96	91	84	75	64	51	36	19	0	-21	-44	-69	-96	-125	-156
10	20	40	60	80	100	120	140	160	180	200	220	240	260	280	300	320
	101	104	109	116	125	136	149	164	181	200	221	244	269	296	325	356
	120	117	112	105	96	85	72	57	40	21	0	-23	-48	-75	-104	-135
11	22	44	66	88	110	132	154	176	198	220	242	264	286	308	330	352
	122	125	130	137	146	157	170	185	202	221	242	265	290	317	346	377
	143	140	135	128	119	108	95	80	63	44	23	0	-25	-52	-81	-112
12	24	48	72	96	120	144	168	192	216	240	264	288	312	336	360	384
	145	148	153	160	169	180	193	208	225	244	265	288	313	340	369	400
12	168	165	160	153	144	133	120	105	88	69	48	25	0	-27	-56	-87
13	26 170	52 173	78	104	130 194	156 205	182 218	208	234	260 269	286 290	312	338	364	390	416
			178	185				233	250			313	338	365	394	425
1.1	195	192	187	180	171	160	147	132	115	96 200	75	52	27	0	-29	-60
14	28	56 200	84 205	112	140	168	196	224	252	280	308	336	364	392	420	448
	197	200	205	212	221	232	245	260	277	296	317	340	365	392	421	452
15	224 30	221	216	209	200 150	189 180	176	161 240	144 270	125	104 330	81 360	56 390	29 120	0 150	-31 480
13	226	60 229	90 224	120	150 250	180	210 274	240 289	270	300	330 346	360 369	390 394	420	450 450	
			234	241		261			306	325				421	450	481
16	255 32	252 64	247 96	240 128	231 160	220 192	207 224	192 256	175 288	156 320	135 352	112 384	87 416	60 448	31 480	0 512
10												384 400				
	257	260	265	272	281	292	305	320	337	356	377	400	425	452	481	512

Таблица 3

таолица 5												
1	3	4	7	11	18	29	47	76	123	199	322	
7	33	72	203	517	1368	3567	9353	24472	64083	167757	439208	
24	<i>56</i>	154	396	<i>1044</i>	<i>2726</i>	7144	18696	48954	128156	335524	878406	
25	65	170	445	1165	3050	7985	20905	54730	143285	375125	982090	
			$F_{n+1} * I$	$F_{n-1} - F_n^2$	$=\pm 5$,	$\Delta_5 = 5$	$00 = 5^3 * 4$	I, <i>Базовы</i>	е числа[3,	4]		
1	4	5	9	14	23	37	60	97	157	254	411	
9	56	115	333	840	2231	5809	15240	39867	104405	273304	715551	
40	90	<i>252</i>	644	1702	4440	11640	30458	79756	208788	546630	1431080	
41	106	277	725	1898	4969	13009	34058	89165	233437	611146	1600001	
		1	$F_{n+1} * F_n$	$-F_{n}^{2} =$	±11,	$\Delta_{11} = 5$	$324 = 11^3$	*4, Базо с	вые числа[[4,5]		
1	5	6	11	<i>17</i>	28	45	73	118	191	309	500	
11	85	168	495	1241	3304	8595	22557	59000	154519	404481	1059000	
60	<i>132</i>	<i>374</i>	952	<i>2520</i>	<i>6570</i>	17228	45076	118038	309000	809000	2117962	
61	<i>157</i>	<i>410</i>	1073	2809	7354	19253	50405	131962	345481	904481	2367962	
	$F_{n+1} * F_{n-1} - F_n^2 = \pm 19,$ $\Delta_{19} = 27436 = 19^3 * 4,$ Базовые числа[5,6]											
1	6	7	13	20	33	53	86	139	225	364	589	
13	120	231	689	1720	4587	11925	31304	81871	214425	561288	1469555	
84	<i>182</i>	<i>520</i>	<i>1320</i>	<i>3498</i>	9116	23908	62550	163800	428792	1122634	2939052	
85	218	<i>569</i>	1489	<i>3898</i>	10205	26717	69946	183121	479417	1255130	3285973	
		F_{n}	$*F_{n-1}$	$-F_n^2 = 1$	±29,	$\Delta_{29} = 97$	$556 = 29^3$	*4, Ба з	вовые числ	ıa[6,7]		
1	7	8	15	23	38	61	99	160	259	419	678	
15	161	304	915	2277	6080	15799	41481	108480	284123	743725	1947216	
112	<i>240</i>	<i>690</i>	<i>1748</i>	4636	<i>12078</i>	31680	82880	217042	568164	1487532	3894350	
113	289	<i>754</i>	1973	5165	13522	<i>35401</i>	92681	242642	635245	1663093	4354034	
		F	$F_{n+1} * F_{n-1}$	$-F_{n}^{2} =$	±41,	$\Delta_{41} = 27$	75684 = 4	1 ³ * 4 <i>Fa3</i>	овые числ	a[7,8]		
1	8								293		767	
17	208	387	1173	2912	7783	20217	53088	138827	363613	951792	2491983	
144	<i>306</i>	884	2236	<i>5934</i>	<i>15456</i>	40544	106066	277764	727116	1903694	4983856	
145	<i>370</i>	965	2525	6610	17305	45305	118610	310525	812965	2128370	5572145	
		$F_{n+1} * I$	$F_{n-1}-F_{r}$	$^{2} = \pm 55$	$\Delta_{55} = 0$	665500 =	55 ³ * 4 B	азовые ч	исла[8,9]			
1	9		19			77		202		529	856	
19	288	480	1463	3625	9696	25179	66125	172912	452895	1185489	3103856	
198	462	1102	2784	7392	19250	50500	132108	345966	905648	2371120	6207570	
202	<i>562</i>	1202	3145	8233	21554	56429	147733	386770	1012577	2650961	6940306	
		F	* F	$-F_{n}^{2}=\pm$	- 71,	$\Delta_{71} = 143$	31644 = 7	1 ³ * 4 <i>Fa3</i>	овые числ	a[9,10]		
1	10	11	21	32		85		223	361	584	945	
21	320	583	1785	4416	11819	30685	80592	210735	551969	1444816	3782835	
220	462	1344	3392	9010	23460	61548	161006	421648	1103760	2889810	7565492	
221	<i>562</i>	1465	3833	10034	26269	68773	180050	471377	1234081	3230866	8458517	
									вые числа			
		- n+1	n-1	_n –	, –	/1 -01.				L - ,I		

пифагоровых троек (табл.3). Родственным признаком каждой из последовательности пифагоровых троек должна быть, по крайней мере, одна величина, которая позволила бы классифицировать эти тройки, относящиеся к данной последовательности. Каждая тройка чисел Фибоначчи определяет одну из пифагоровых троек, следовательно, можно считать родственными тройки одной и той же последовательности.

Для нахождения этой величины изучим совокупность двух последовательных прямоугольных треугольников, построенных по тройкам Пифагора. Рассмотрение такой совокупности треугольников позволяет выявить её особенности.

Оказывается, что имеет место система трех линейных уравнений с тремя неизвестными

$$2x_2 = -x_1 + 2y_1 + z_1$$

$$y_2 = x_1 + y_1 + z_1,$$

$$2z_2 = x_1 + 2y_1 + 3z_1,$$

для двух соседних троек или в матричной форме записи

$$\begin{bmatrix} 2x_2 \\ y_2 \\ 2z_2 \end{bmatrix} = \begin{bmatrix} -1 & 2 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix} * \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}.$$

Определитель матрицы, как и определители чисел Фибоначчи, равняется четырём. Это следует из таблиц 1 и 3, где верхняя строчка из каждой четверки строчек соответствует последовательности Фибоначчи, а остальные три – последовательностям чисел x, y, z в каждой строке.

Рассматривая уравнения для (x_n, y_n, z_n) , получим, как и следовало ожидать, соотношение Пифагора:

$$x_n^2 + y_n^2 = z_n^2$$
,

причем оно определяет пифагорову тройку $(x_{n+1},y_{n+1},z_{n+1})$ через предыдущую тройку (x_n,y_n,z_n) , так что в таблицах 1, 3 представлены последовательности Фибоначчи, пифагоровы тройки и соответствующие им определители. Отметим, что определитель третьего порядка из пифагоровых троек, кратен четырём и кубу числа определяющего последовательности пифагоровых троек, причем это число определяется рядом 1,5,11,19,29,41,55,71,89,... с рекуррентным соотношением $P_{n+1}=3*(P_n-P_{n-1})+P_{n-2}$.

Рассмотренные последовательности получены путем перехода от троек с меньшим номером к пифагоровым тройкам с большим номером. Это определяет матрицу преобразования координат(x_n , y_n , z_n). Очевидно, что возможен и

обратный процесс нахождения пифагоровых троек, соответствующих последовательности чисел Фибоначчи. Для этого нужно установить порядок нахождения троек с меньшим номером из троек с большим номером, т.е. установить обратную матрицу линейного преобразования A_n как функцию A_{n+1} . Вычисления показывают, что матрица обратного преобразования требует использования функций Фибоначчи. Причем

$$\begin{bmatrix} 2x_1 \\ 2y_1 \\ 2z_1 \end{bmatrix} = \begin{bmatrix} -2 & -3 & 4 \\ 1 & -3 & 3 \\ 0 & 3 & -2 \end{bmatrix} * \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} + \begin{bmatrix} -\Delta \\ -\Delta \\ \Delta \end{bmatrix}$$

где Δ - числа рекуррентного соотношения вида:

$$P_{n+1} = 2(P_n + P_{n-1}) - P_{n-2}.$$

Это соотношение определяет последовательность 0, 2, 3, 10, 24, 65, 168, 442, Если разложить числа этой последовательности на составляющие, то можно видеть, что эти числа определяются произведением чисел двух рядов Фибоначчи сдвинутых на два такта между собой, т.е. они представляют собой функцию

$$F = F_{n+1} * F_{n-1}$$
.

Таблица 4

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14 610 233 142130	•••
F_{n+1}	1	2	3	5	8	13	21	34	55	89	144	233	377	610	•••
F_{n-1}	0	1	1	2	3	5	8	<i>13</i>	21	<i>34</i>	55	89	144	233	•••
\boldsymbol{F}	0	2	3	<i>10</i>	<i>24</i>	<i>65</i>	<i>168</i>	442	1155	<i>3026</i>	<i>7920</i>	20737	54288	<i>142130</i>	•••

Таким образом, систематизированы ряды пифагоровых троек по алгоритму Фибоначчи. Эти пифагоровы тройки определяют каждую последующую тройку через предыдущую и наоборот. Они характеризуются числами определителей третьего порядка, и могут быть применены к любой тройке пифагоровых чисел. Значение определителя постоянно по всей бесконечной длине последовательностей. Для достаточно больших значений величин отношения

$$\frac{Z_{n+1}}{Z_n} \approx 2,618034, \frac{X_{n+1}}{X_n} \approx \frac{Y_{n+1}}{Y_n} \approx 1,618034.$$

Так что полученные последовательности чисел, как и последовательность Фибоначчи, характеризуется золотым сечением, поэтому следует рассматривать последовательность Фибоначчи как частный случай более широкого объекта - множества последовательностей Фибоначчи-Пифагора (табл.5).

Стоит заметить, что с каждой тройкой Фибоначчи жестко связана определенная тройка Пифагора (табл.5). Можно отметить и обратное – каждой тройке Пифагора соответствует тройка последовательности

Таблица 5

			Тройк	и чис	ел (F _{n-1} ,	$F_n F_n$	+1)/(x,y,z)	(Фиб	оначчи-І	Тифаг	opa)		
1	3	1	7	1	9	1	11	1	13	1	15	1	17
1	4	3	24	4	40	5	60	6	84	7	112	8	144
2	5	4	25	5	41	6	61	7	85	8	113	9	145
1	5	3	33	4	56	5	85	6	120	7	161	8	208
2	12	4	<i>56</i>	5	90	6	132	7	182	8	<i>240</i>	9	306
3	13	7	<i>65</i>	9	106	11	157	13	218	15	289	17	370
2	16	4	72	5	115	6	168	7	231	8	304	9	387
3	30	7	154	9	252	11	<i>374</i>	13	<i>520</i>	15	<i>690</i>	<i>17</i>	884
5	34	11	<i>170</i>	14	277	<i>17</i>	410	20	569	23	<i>754</i>	26	965
3	39	7	203	9	333	11	495	13	689	15	915	17	1173
5	80	11	<i>396</i>	14	644	<i>17</i>	952	20	1320	23	<i>1748</i>	26	2236
8	89	18	445	23	725	28	1073	33	1489	38	1973	43	2525
5	105	11	517	14	840	17	1241	20	1720	23	2277	26	2912
8	208	18	1044	23	<i>1702</i>	28	<i>2520</i>	33	<i>3498</i>	38	4636	43	5934
<i>13</i>	233	29	1165	37	1898	45	2809	53	3898	61	5165	69	6610
8	272	18	<i>1368</i>	23	2231	28	3304	33	4587	38	6080	43	7783
13	<i>546</i>	29	<i>2726</i>	37	4440	45	<i>6570</i>	53	9116	61	<i>12078</i>	69	15456
21	610	47	3050	60	4969	73	7354	86	10205	99	13522	112	17305
13	715	29	3567	37	5809	45	8595	53	11925	61	15799	69	20217
21	1428	47	7144	60	11640	73	17228	86	23908	99	31680	112	40544
<i>34</i>	1597	<i>76</i>	7985	97	13009	118	19253	139	26717	<i>160</i>	35401	181	45305
21	1869	47	9353	60	15240	73	22557	86	31304	99	41481	112	53088
<i>34</i>	<i>3740</i>	<i>76</i>	18696	97	<i>30458</i>	118	45076	139	<i>62550</i>	<i>160</i>	82880	181	106066
55	4181	123	20905	157	34058	191	50405	225	69946	259	92681	293	118610
34	4896	76	24472	97	39867	118	59000	139	81871	160	108480	181	138827
55	9790	123	48954	157	<i>79756</i>	191	118038	225	<i>163800</i>	259	217042	293	277764
<i>89</i>	10946	199	54730	254	89165	309	131962	364	183121	419	242642	474	310525

Фибоначчи.

В таблице 6 приведены значения гипотенуз в случае изменении базовых чисел. Из неё следует, что не все пифагоровы тройки представлены этой таблицей. Так, например, отсутствует пифагорова тройка (8,15,17)[2], однако, в таблице представлена пифагорова тройка (16, 30, 34), что характеризует удвоенное число (8, 15, 17). Удвоение троек с взаимно простыми числами характерно для последовательности Фибоначчи, где

Таблица 6

				Гипотенуз	a z			аолица о
5	25	41	61	85	113	145	181	221
<i>13</i>	65	106	157	218	289	370	461	562
34	170	277	410	569	<i>754</i>	965	1202	1465
89	445	725	1073	1489	1973	2525	3145	3833
233	1165	1898	2809	3898	5165	6610	8233	10034
610	3050	4969	7354	10205	13522	17305	21554	26269
1597	<i>7985</i>	13009	19253	26717	<i>35401</i>	45305	56429	<i>68773</i>
4181	20905	34058	50405	69946	92681	118610	147733	180050
10946	54730	89165	131962	183121	242642	310525	386770	471377
28657	143285	233437	345481	479417	635245	812965	1012577	1234081
<i>75025</i>	375125	611146	904481	1255130	1663093	2128370	2650961	3230866

представлены чётные значения отдельных чисел 1, 1, 2, 3, 5, 8, 13, 21, 34...

Таким образом, нами показана жёсткая взаимосвязь троек Пифагора и Фибоначчи. Для троек Пифагора наиболее приемлема таблица 7, обладающая высокой плотностью записи информации, однако, фиксирующая значение х и у, как функции величин с и d. Причем

$$x = \frac{c+d}{2}, \quad y = \frac{c-d}{2}$$

и, очевидно, $c^2 + d^2 \neq z^2$ при $x^2 + y^2 = z^2$.

Связь троек Фибоначчи и Пифагора определяется таблицей 5, причем по вертикали действует рекуррентное соотношение $P_{n+1} = 3P_n - P_{n-1}$, а по горизонтали соответствующие уравнения связи чисел F и P Фибоначчи и Пифагора.

Отметим, наконец, весьма важную особенность приведенных выше последовательностей, заключающуюся в том, что числа Пифагора выражены через величины сумм катетов с, разности катетов d и гипотенузы z соответствуют уравнению Диофанта

$$c^2 - 2 * z^2 = \pm d^2$$
.

Это легко проверяемое свойство следует из таблицы 7. Так, для тройки (d,z,c)=(7,17,23) имеем

$$23^2 - 2*17^2 = -7^2$$
.

Такая зависимость чисел Пифагора характерна для уравнения Диофанта, что определяет связь чисел Пифагора и Диофанта. Это можно показать для любой тройки чисел (d,z,c), определяющей пифагорову тройку (x,y,z).

Диофантовы уравнения удовлетворяются не только числами (d,z,c), но так же числами (d,t,p), где p - периметр прямоугольного треугольника p=x+y+z или p=c+z, а t-cумма периметра и гипотенузы t=p+z или t=c+2z. Для них $t^2-2p^2=\pm d^2$. Например,

$$17^2 - 2 * 12^2 = 1^2$$
.

Это свойство легко подтвердить рассмотрением таблицы 8. Отметим, что эти величины неявно связаны с величинами х и у, причем числа t и р, как и числа с и d лишь косвенно не удовлетворяют уравнению Пифагора. Отметим также, что в правой части уравнения Диофанта представлена величина $\pm d^2$, т.е. оно выполнимо лишь для чисел типа $8n\pm 1$, которые соответствуют числам с и d, образующим дискретный ряд значений

Большинство из приведенных последовательностей чисел соответствует рекуррентному соотношению $z_{n+1} = 3z_n - z_{n-1}$ и позволяет построить числовые плоскости. Например, для последовательности Фибоначчи имеем числовую плоскость с симметрией чисел по координатам (табл.9).

Аналогично можно построить числовые трехмерные пространства Фибоначчи. Кроме того, по различным координатам плоскостей и трехмерных пространств последовательности Фибоначчи могут быть задействованы не только числа Фибоначчи, но также другие базовые числа, при этом последовательности (числовых кристаллов) будут различны.

Таблица 7.

						Tpoi	йки чи	сел (d.	z.c)						•
$h \setminus g$	1	3	5	7	9	11	13	15	17	19	21	23	25	27	29
	-1	7	23	47	79	119	167	223	287	359	439	527	623	727	839
1	5	17	37	65	101	145	197	257	325	401	485	577	677	785	901
	7	23	47	79	119	167	223	287	359	439	527	623	727	839	959
	-7	1	17	41	73	113	161	217	281	353	433	521	617	721	833
2	13	29	53	85	125	173	229	293	365	445	533	629	733	845	965
	17	41	73	113	161	217	281	353	433	521	617	721	833	953	1081
	-17	-9	7	31	63	103	151	207	271	343	423	511	607	711	823
3	25	45	73	109	153	205	265	333	409	493	585	685	793	909	1033
	31	63	103	151	207	271	343	423	511	607	711	823	943	1071	1207
	-31	-23	-7	17	49	89	137	193	257	329	409	497	593	697	809
4	41	65	97	137	185	241	305	377	457	545	641	745	857	977	1105
	49	89	137	193	257	329	409	497	593	697	809	929	1057	1193	1337
	-49	-41	-25	-1	31	71	119	175	239	311	391	479	575	679	791
5	61	89	125	169	221	281	349	425	509	601	701	809	925	1049	1181
	71	119	175	239	311	391	479	575	679	791	911	1039	1175	1319	1471
	-71	-63	-47	-23	9	49	97	153	217	289	369	457	553	657	769
6	85	-03 117	157	205	261	325	397	477	565	661	765	877	997	1125	1261
	97	153	217	289	369	457	553	657	769	889	1017	1153	1297	1449	1609
	-97	-89	-73	-49	-17	23	71	127	191	263	343	431	527	631	743
7	113	149	193	245	305	373	449	533	625	725	833	949	1073	1205	1345
	127	191	263	343	431	527	631	743	863	991	1127	1271	1423	1583	1751
	-127	-119	-103	-79	-47	-7	41	97	161	233	313	401	497	601	713
8	145	185	233	289	353	425	505	593	689	793	905	1025	1153	1289	1433
	161	233	313	401	497	601	713	833	961	1097	1241	1393	1553	1721	1897
	-161	-153	-137	-113	-81	-41	713	63	127	199	279	367	463	567	679
9	181	225	277	337	405	481	565	657	757	865	981	1105	1237	1377	1525
	199	279	367	463	567	679	799	927	1063	1207	1359	1519	1687	1863	2047
	-199	-191	-175	-151	-119	-79	-31	25	89	161	241	329	425	529	641
10	221	269	325	389	461	541	629	725	829	941	1061	1189	1325	1469	1621
10	241	329	425	529	641	761	889	1025	1169	1321	1481	1649	1825	2009	2201
	-241	-233	-217	-193	-161	-121	-73	-17	47	119	199	287	383	487	599
11	265	317	377	445	521	605	697	797	905	1021	1145	1277	1417	1565	1721
	287	383	487	599	719	847	983	1127	1279	1439	1607	1783	1967	2159	2359
	-287	-279	-263	-239	-207	-167	-119	-63	1	73	153	241	337	441	553
12	313	369	433	505	585	673	769	873	985	1105	1233	1369	1513	1665	1825
~~	337	441	553	673	801	937	1081	1233	1393	1561	1737	1921	2113	2313	2521
	-337	-329	-313	-289	-257	-217	-169	-113	-49	23	103	191	287	391	503
13	365	425	493	569	653	745	845	953	1069	1193	1325	1465	1613	1769	1933
	391	503	623	751	887	1031	1183	1343	1511	1687	1871	2063	2263	2471	2687
	-391	-383	-367	-343	-311	-271	-223	-167	-103	-31	49	137	233	337	449
14	421	485	557	637	725	821	925	1037	1157	1285	1421	1565	1717	1877	2045
	449	569	697	833	977	1129	1289	1457	1633	1817	2009	2209	2417	2633	2857
	-449	-441	-425	-401	-369	-329	-281	-225	-161	-89	-9	79	175	279	391
15	481	549	625	709	801	901	1009	1125	1249	1381	1521	1669	1825	1989	2161
	511	639	775	919	1071	1231	1399	1575	1759	1951	2151	2359	2575	2799	3031
	-511	-503	-487	-463	-431	-391	-343	-287	-223	-151	-71	17	113	217	329
16	545	617	697	785	881	985	1097	1217	1345	1481	1625	1777	1937	2105	2281
	577	713	857	1009	1169	1337	1513	1697	1889	2089	2297	2513	2737	2969	3209
	-577	-569	-553	-529	-497	-457	-409	-353	-289	-217	-137	-49	47	151	263
17	613	689	773	865	965	1073	1189	1313	1445	1585	1733	1889	2053	2225	2405
	647	791	943	1103	1271	1447	1631	1823	2023	2231	2447	2671	2903	3143	3391
	U-7/	171	773	1103	14/1	177/	1031	1023	2023	22J1	∠ 77/	20/1	2703	3173	3371

					Тпой	VII 1111	сел (d,	t n) []	Tunda	има)				1 аоли	
7.7	-		22	47			`	7 7 7			120	527	(22	727	020
d1	-1 17	7 57	23	47 200	79	119 457	167	223	287	359	439	527	623	727	839
t n	17	57 40	121 84	209 144	321	457	617 420	801 544	1009	1241 840	1497	1777	2081	2409 1624	2761 1860
<i>p</i>	12			144	220	312	420	544	684	840 252	1012	1200	1404	1624	1860
d2	-7 43	1 99	17 179	41 283	73 411	113 563	161 739	217 939	281 1163	353 1411	433 1683	521 1979	617 2299	721 2643	833 3011
t n	30	99 70	179 126	283 198	411 286	390	739 510	939 646	1163 798	1411 966	1683 1150	1350	2299 1566	2643 1798	3011 2046
<i>p d3</i>	-17	-9	7	31	63	103	151	207	271	343	423	511	607	711	823
as t	-17 81	-9 153	249	31 369	513	103 681	151 873	207 1089	271 1329	343 1593	423 1881	2193	2529	2889	823 3273
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	56	108	176	260	360	476	608	756	920	1100	1296	1508	1736	1980	2240
$\frac{P}{d4}$	-31	-23	-7	17	49	89	137	193	257	329	409	497	593	697	809
t	131	219	331	467	627	811	1019	1251	1507	1787	2091	2419	2771	3147	3547
p	90	154	234	330	442	570	714	874	1050	1242	1450	1674	1914	2170	2442
d5	-49	-41	-25	-1	31	71	119	175	239	311	391	479	575	679	791
t	193	297	425	577	753	953	1177	1425	1697	1993	2313	2657	3025	3417	3833
p	132	208	300	408	532	672	828	1000	1188	1392	1612	1848	2100	2368	2652
d6	-71	-63	-47	-23	9	49	97	153	217	289	369	457	553	657	769
t	267	387	531	699	891	1107	1347	1611	1899	2211	2547	2907	3291	3699	4131
p	182	270	374	494	630	782	950	1134	1334	1550	1782	2030	2294	2574	2870
d7	-97	-89	-73	-49	-17	23	71	127	191	263	343	431	527	631	743
t	353	489	649	833	1041	1273	1529	1809	2113	2441	2793	3169	3569	3993	4441
p	240	340	456	588	736	900	1080	1276	1488	1716	1960	2220	2496	2788	3096
d8	-127	-119	-103	-79	-47	-7	41	97	161	233	313	401	497	601	713
t	451	603	779	979	1203	1451	1723	2019	2339	2683	3051	3443	3859	4299	4763
р	306	418	546	690	850	1026	1218	1426	1650	1890	2146	2418	2706	3010	3330
d9	-161	-153	-137	-113	-81	-41	7	63	127	199	279	367	463	567	679
t	561	729	921	1137	1377	1641	1929	2241	2577	2937	3321	3729	4161	4617	5097
p	380	504	644	800	972	1160	1364	1584	1820	2072	2340	2624	2924	3240	3572
d10	-199	-191	-175	-151	-119	-79	-31	25	89	161	241	329	425	529	641
t	683	867	1075	1307	1563	1843	2147	2475	2827	3203	3603	4027	4475	4947	5443
p	462	598	750	918	1102	1302	1518	1750	1998	2262	2542	2838	3150	3478	3822
d11	-241	-233	-217	-193	-161	-121	-73	-17	47	119	199	287	383	487	599
t	817	1017	1241	1489	1761	2057	2377	2721	3089	3481	3897	4337	4801	5289	5801
<i>p</i>	552	700	864	1044	1240	1452	1680	1924	2184	2460	2752	3060	3384	3724	4080
D12	-287	-279	-263	-239	-207	-167	-119	-63	1	73	153	241	337	441	553
t n	963	1179	1419	1683	1971	2283	2619	2979	3363	3771	4203	4659	5139	5643	6171
<i>p</i>	650	810	986	1178	1386	1610	1850	2106	2378	2666	2970	3290	3626	3978	4346
d13	-337 1121	-329 1353	-313 1609	-289 1889	-257 2193	-217 2521	-169 2873	-113 3249	-49 3649	23 4073	103 4521	191 4993	287 5489	391 6009	503 6553
t p	756	1353 928	1116	1320	1540	2321 1776	2028	2296	2580	2880	3196	3528	3876	4240	4620
d14	-391	-383	-367	-343	-311	-271	-223	-167	-103	-31	49	137	233	337	449
t t	1291	1539	1811	2107	2427	2771	3139	3531	3947	4387	4851	5339	5851	6387	6947
p	870	1054	1254	1470	1702	1950	2214	2494	2790	3102	3430	3774	4134	4510	4902
d15	-449	-441	-425	-401	-369	-329	-281	-225	-161	-89	-9	79	175	279	391
t	1473	1737	2025	2337	2673	3033	3417	3825	4257	4713	5193	5697	6225	6777	7353
p	992	1188	1400	1628	1872	2132	2408	2700	3008	3332	3672	4028	4400	4788	5192
d16	-511	-503	-487	-463	-431	-391	-343	-287	-223	-151	-71	17	113	217	329
t	1667	1947	2251	2579	2931	3307	3707	4131	4579	5051	5547	6067	6611	7179	7771
р	1122	1330	1554	1794	2050	2322	2610	2914	3234	3570	3922	4290	4674	5074	5490
d17	-577	-569	-553	-529	-497	-457	-409	-353	-289	-217	-137	-49	47	151	263
t	1873	2169	2489	2833	3201	3593	4009	4449	4913	5401	5913	6449	7009	7593	8201
p	1260	1480	1716	1968	2236	2520	2820	3136	3468	3816	4180	4560	4956	5368	5796

Таблица 9

			Пл	оскост	и послес	довател	ьности (Фибонач	ни		
1	1	2	3	5	8	13	21	34	55	89	144
1	2	3	5	8	13	21	<i>34</i>	55	89	144	233
2	3	5	8	<i>13</i>	21	<i>34</i>	55	89	144	233	377
3	5	8	<i>13</i>	21	<i>34</i>	55	89	144	233	377	610
5	8	<i>13</i>	<i>21</i>	<i>34</i>	55	89	144	233	377	610	987
8	<i>13</i>	21	<i>34</i>	55	<i>89</i>	144	233	377	610	987	1597
13	21	<i>34</i>	55	<i>89</i>	144	233	377	610	987	1597	2584
21	<i>34</i>	<i>55</i>	<i>89</i>	144	233	377	610	987	<i>1597</i>	2584	4181
34	55	<i>89</i>	<i>144</i>	233	<i>377</i>	<i>610</i>	987	1597	2584	4181	6765
55	89	<i>144</i>	233	<i>377</i>	<i>610</i>	987	1597	2584	4181	6765	10946
89	<i>144</i>	233	<i>377</i>	<i>610</i>	987	1597	2584	4181	6765	10946	17711
144	233	377	610	987	1597	2584	4181	6765	10946	17711	28657

Литература

- 1. Воробьев Н.Н. Числа Фибоначчи.- Наука, 1978, 144 с.
- 2. Коротков А. В. Элементы классификации пифагоровых чисел. Новочеркасск: Набла, 2009. 73 с.

Глава 6

УДК 512/7

Физико-математические науки.

В статье рассматриваются вопросы построения связи между последовательностями чисел Пифагора, а также показана возможность построения совершенно новых математических объектов таких, как кольца простых чисел, и последовательности этих колец в рамках евклидовых и псевдоевклидовых представлений. Приведены примеры числовых колец из 25-ти чисел с восьмерками Пифагора и 16-тью числами Диофанта, и характерным числом. Эти кольца замкнуты, создают последовательности и могут иметь отношение к природным явлениям, в частности, к построению календаря.

Коротков Анатолий Васильевич, к.т.н., д.ф.-м.н., доцент., Акад. МАСИ.

Международный центр теоретической физики, г. Новочеркасск

адрес: avkorotkov1945@yandex.ru

Ключевые слова и фразы: простые числа, кольца простых чисел, последовательности простых чисел и колец, кольца из 25-ти чисел, восемь чисел Пифагора, шестнадцать чисел Диофанта, связь чисел, пример календаря.

Особенности построения последовательности простых чисел

©2013г., А.В. Коротков Международный центр теоретической физики (2^n -1-D технологии), г. Новочеркасск

$$\begin{vmatrix}
3-D & 2^m-1 & 2n+1 \\
2n+1 & 7-D & 2^m-1 \\
2^m-1 & 2n+1 & 15-D
\end{vmatrix}$$

С целью классификации простых чисел числового натурального ряда рассмотрим множество простых чисел, состоящих из нечетных значений чисел натурального числового ряда таких, что они не имеют делителей кроме самого числа и единицы. Для этого попытаемся убрать четные и возможно большее число составных нечетных чисел. Это можно осуществить, если рассмотреть наборы чисел натурального ряда с интервалом n=6 (таблица 1-вверху слева).

Таблица 1

1	7	13	19	25	31	37	•••		1	7	13	19	25	31	
2	8	14	20	<i>26</i>	<i>32</i>	<i>38</i>	•••	5	11	17	<i>23</i>	29	<i>3</i> 5	41	
3	9	15	21	27	33	<i>39</i>	•••		1	<i>13</i>	<i>25</i>	<i>37</i>	49	<i>61</i>	
4	10	<i>16</i>	22	<i>28</i>	34	40	•••		5	17	<i>29</i>	41	<i>53</i>	<i>65</i>	
5	11	<i>17</i>	<i>23</i>	29	<i>35</i>	41	•••		7	19	31	<i>43</i>	<i>55</i>	<i>67</i>	
6	12	18	24	30	36	42	•••		11	23	<i>35</i>	47	59	71	•••
•••	•••	•••	•••	•••	7	19	31	43	<i>55</i>	<i>67</i>	<i>79</i>	91	•••	•••	•••
	•••	•••		5	<i>17</i>	29	41	<i>53</i>	<i>65</i>	<i>77</i>	<i>89</i>	•••	•••		
•••	•••	•••	13	<i>25</i>	<i>37</i>	49	61	<i>73</i>	<i>85</i>	<i>97</i>	•••	•••	•••	•••	
•••	•••	11	23	35	47	59	71	83	95	•••	•••	•••	•••	•••	•••

Таблица 2

ица 7	283	583	883	1183	1483	1783	2083	2383	2683	2983	3283	3583	3883	4183	4483	4783	2083	5383	5683	5983	6283	6583	6883	7183
І аолица	271	571	871	1171	1471	1771	2071	2371	2671	2971	3271	3571	3871	4171	4471	4771	5071	5371	5671	5971	6271	6571	6871	7171
	259	259	859	1159	1459	1759	2059	2359	2659	2959	3259	3559	3859	4159	4459	4759	2059	5359	2659	5959	6529	6229	6829	7159
	247	547	847	1147	1447	1747	2047	2347	2647	2947	3247	3547	3847	4147	4447	4747	5047	5347	5647	5947	6247	6547	6847	7147
	223	523	823	1123	1423	1723	2023	2323	2623	2923	3223	3523	3823	4123	4423	4723	<u>5023</u>	5323	5623	5923	6223	6523	6823	7123
	211	511	811	1111	1411	1711	2011	2311	2611	2911	3211	3511	3811	4111	4411	4711	<u>5011</u>	5311	5611	5911	6211	6511	6811	7111
	<u>199</u>	499	299	1099	1399	1699	1999	2299	2599	2899	3199	3499	3799	4099	4399	4699	4999	5299	2299	5899	619	6499	6629	7099
	187	487	787	1087	1387	1687	1987	<u>2287</u>	2587	2887	3187	3487	3787	4087	4387	4687	4987	5287	2287	5887	6187	6487	2819	7087
	<u>163</u>	463	293	1063	1363	1663	1963	2263	2563	2863	3163	3463	3763	4063	4363	4663	4963	5263	5563	5863	<u>6163</u>	6463	<u>6763</u>	2063
	<u>151</u>	451	751	<u>1051</u>	1321	1651	1951	<u>2251</u>	2551	2851	3151	3451	3751	4051	4351	4651	4951	5251	5551	5851	6151	6451	6751	7051
	<u>139</u>	439	739	1039	1339	1639	1939	2239	2539	2839	3139	3439	3739	4039	4339	4639	4939	5239	5539	5839	6139	6439	6239	7039
	<u>127</u>	427	727	1027	1327	1627	1927	2227	2527	2827	3127	3427	3727	4027	4327	4627	4927	5227	5527	5827	6127	6427	6727	7027
	103	403	203	1003	1303	1603	1903	2203	2503	2803	3103	3403	3703	4003	4303	4603	4903	5203	5503	5803	6103	6403	6703	7003
	91	391	691	991	1291	1591	1891	2191	2491	2791	3091	3391	3691	3991	4291	4591	4891	5191	5491	5791	1609	6391	1699	6991
	<u>79</u>	379	629	626	1279	1579	1879	2179	2479	2779	3079	3379	<i>3</i> 256	3979	4279	4579	4879	<u>5179</u>	5479	<u>5779</u>	6209	6379	6299	6269
	<u>79</u>	367	299	<u> 296</u>	1267	1567	1867	2167	2467	2767	3067	3367	<i>2998</i>	3967	4267	4567	4867	5167	5467	2267	<u> </u>	989	<i>2999</i>	2969
	43	343	643	943	1243	<u>1543</u>	1843	2143	2443	2743	3043	3343	3643	3943	4243	4543	4843	5143	5443	5743	<u>6043</u>	6343	6643	6943
	31	331	631	931	1231	1531	1831	2131	2431	2731	3031	3331	3631	3931	4231	4531	4831	5131	5431	5731	1809	6331	6631	6931
	<u>19</u>	319	<u>619</u>	919	1219	1519	1819	2119	2419	2719	3019	3319	3619	3919	4219	4519	4819	5119	5419	5719	6019	6319	6619	6169
	Z	307	<u>709</u>	<u>807</u>	1207	1507	1807	2107	2407	2707	3007	3307	3607	3907	4207	4507	4807	<u>5107</u>	<u>5407</u>	2207	<u> 2009</u>	9307	<u>2099</u>	<u>7069</u>

Очевидно, что при интервале между числами в шесть единиц числа располагаются в три ряда нечетных чисел и три ряда четных чисел, и кроме того средний ряд нечетных чисел состоит из чисел, делящихся на три. Таким образом, принципиально важны всего два числовых ряда..., 1, 7, 13, 19, ... и ..., *5, 11, 17, 23, ...* Вместе с тем, эти ряды состоят из чисел классов вычетов *1* и *3* по модулю 4. Это недоразумение можно исключить путем, чересстрочной развертки этих двух рядов. Таким образом, появляются четыре ряда характеризующиеся, классом вычетов по модулю один и три, с четной или нечетной предпоследней цифрой числа (таблица 1 - средний блок чисел справа). Эта таблица имеет существенный недостаток - числа кратные пяти, не составляют числовой последовательности. Этот недостаток исключается путем смещения, рассмотренных рядов между собой. В этом случае, числа кратные пяти формируют вертикальную числовую последовательность и ею можно пренебрегать, так же как последовательностями четных чисел. В таблице 2 такие числа подчеркнуты. Из пятисот чисел в такой таблице, находится лишь десять четверок простых чисел.

Можно рассматривать интервалы между числами не только в шесть, но и большие - ..., 12, 18, 24, 30, ... Для начала рассмотрим таблицы простых чисел с интервалом 12. При этом каждая четверка чисел с интервалом между числами 12, заключена между последовательностями чисел кратных пяти. Так в нашем примере числа располагаются в последовательности четверок чисел с цифрами 7, 9, 1, 3 в конце числа. Так что формируются две последовательности чисел классов вычетов «один» и «три» по модулю четыре или четыре последовательности чисел с одним из классов вычетов, но при этом, чтобы сохранить структуру последовательностей в удобной форме, следует учитывать четность второй цифры от конца числа (таблица 2). Эта таблица позволяет найти последовательности четверок простых чисел с заданным интервалом, в нашем случае равным 12. Значения таких последовательностей включены в таблицу 3.

В таблице 3 последовательности простых чисел сформированы по классам вычетов 1 и 3 по модулю 4, в две вертикальные колонки. Очевидно, что строки таблицы 3 следуют через неравные промежутки и числа располагаются хаотично, вдоль каждого столбца, создавая нарастающую последовательность. Это приводит к ухудшению прогноза следующего числа из четверки простых чисел. Вместе с тем общее поведение кривых связанных, четверками простых чисел дает возможность оценки разброса простых чисел в каждом ряду (рис. 1).

Представленный график последовательности простых чисел хорошо аппроксиммируется с помощью квадратичной функции. Разброс чисел оценивался с помощью регрессионного анализа. Для чисел последовательности ..., 17, 29, 41, 53, ... регрессионный анализ дает:

 $Y(x)=59,096806*x^2-945,5739017*x+5076,2669683.$

Практически тот же результат оценивается величиной $Y(x)=59x^2$.

Для чисел последовательностей ..., 7, 19, 31, 43, ... регрессионный анализ дает величину:

 $Y(x)=57.8209107*x^2-80.2845915*x+1341.4677071.$

Практически тот же результат дает $Y(x)=58x^2$.

Таблица 3.

17 29 41 53 7 19 31 43 257 269 281 293 47 59 71 83 397 409 421 433 127 139 151 163 997 1009 1021 1033 227 239 251 263 1697 1709 1721 1733 467 479 491 503 1877 1889 1901 1913 607 619 631 643 4217 4229 4241 4253 1447 1459 1471 1483 7537 7549 7561 7573 2647 2659 2671 2683 7817 7829 7841 7853 3307 3319 3331 3343 11777 11789 11801 11813 3547 3559 3571 3583 12577 12589 12601 12613 3907 3919<					1			аолица 5.
397 409 421 433 127 139 151 163 997 1009 1021 1033 227 239 251 263 1697 1709 1721 1733 467 479 491 503 1877 1889 1901 1913 667 619 631 643 4217 4229 4241 4253 1447 1459 1471 1483 7297 7309 7321 7333 1487 1499 1511 1523 7537 7549 7561 7573 2647 2659 2671 2683 7817 7829 7841 7853 3307 3319 3331 3343 11777 11789 11801 11813 3547 3559 3571 3583 12577 12589 12601 12613 3907 3919 3931 3943 15137 1549 1561 1573 <	17	29	41	53	7	19	31	43
997 1009 1021 1033 227 239 251 263 1697 1709 1721 1733 467 479 491 503 1877 1889 1901 1913 607 619 631 643 4217 4229 4241 4253 1447 1459 1471 1483 7297 7309 7321 7333 1487 1499 1511 1523 7537 7549 7561 7573 2647 2659 2671 2683 7817 7829 7841 7853 3307 3319 3331 3433 11777 11789 11801 11813 3547 3559 3571 3583 12577 12589 12601 12613 3907 3919 3931 3943 15137 15149 15161 15173 4987 4999 5011 5023 15273 1589 15761 15733<								
1697 1709 1721 1733 467 479 491 503 1877 1889 1901 1913 607 619 631 643 4217 4229 4241 4253 1447 1459 1471 1483 7297 7309 7321 7333 1487 1499 1511 1523 7537 7549 7561 7573 2647 2659 2671 2683 7817 7829 7841 7853 3307 3319 3331 3343 11777 11789 11801 11813 3547 3559 3571 3583 12577 12589 12601 12613 3907 3919 3931 3943 15137 15149 15161 15173 4987 4999 5011 5023 15277 1589 15901 15913 6287 6299 6311 6233 1937 19949 19961 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>								
1877 1889 1901 1913 607 619 631 643 4217 4229 4241 4253 1447 1459 1471 1483 7297 7309 7321 7333 1487 1499 1511 1523 7537 7549 7561 7573 2647 2659 2671 2683 7817 7829 7841 7853 3307 3319 3331 3343 11777 11789 11801 11813 3547 3559 3571 3583 12577 12589 12601 12613 3907 3919 3931 3943 15137 15149 15161 15173 4987 4999 5011 5023 15877 15889 15901 15913 6287 6299 6311 6323 19937 19949 19961 19973 6947 6959 6971 6983 21577 21589 21601	997		1021		227			
4217 4229 4241 4253 1447 1459 1471 1483 7297 7309 7321 7333 1487 1499 1511 1523 7537 7549 7561 7573 2647 2659 2671 2683 7817 7829 7841 7853 3307 3319 3331 3343 11777 11789 11801 11813 3547 3559 3571 3583 12577 12589 12601 12613 3907 3919 3931 3943 15137 15149 15161 15173 4987 4999 5011 5023 15737 15749 15761 15773 5407 5419 5431 5443 15877 15889 15901 15913 6287 6299 6311 6323 21577 21589 21601 21613 10067 10079 10091 10103 23017 23029 <td< th=""><th>1697</th><th>1709</th><th>1721</th><th>1733</th><th>467</th><th>479</th><th>491</th><th>503</th></td<>	1697	1709	1721	1733	467	479	491	503
7297 7309 7321 7333 1487 1499 1511 1523 7537 7549 7561 7573 2647 2659 2671 2683 7817 7829 7841 7853 3307 3319 3331 3343 11777 11789 11801 11813 3547 3559 3571 3583 12577 12589 12601 12613 3907 3919 3931 3943 15137 15149 15161 15173 4987 4999 5011 5023 15737 15749 15761 15773 5407 5419 5431 5443 15877 15889 15901 15913 6287 6299 6311 6323 19937 19949 19961 19973 6947 6959 6971 6983 21577 21589 21601 21613 10067 10079 10091 10103 23017 23029	1877	1889	1901	1913	607	619	<i>631</i>	643
7537 7549 7561 7573 2647 2659 2671 2683 7817 7829 7841 7853 3307 3319 3331 3343 11777 11789 11801 11813 3547 3559 3571 3583 12577 12589 12601 12613 3907 3919 3931 3943 15137 15149 15161 15173 4987 4999 5011 5023 15737 15749 15761 15773 5407 5419 5431 5443 15877 15889 15901 15913 6287 6299 6311 6323 19937 19949 19961 19973 6947 6959 6971 6983 21577 21589 21601 21613 10067 10079 10091 10103 23017 23029 23041 23053 10627 10639 10651 10663 24097 24109	4217	4229	4241	4253	1447	1459	1471	1483
7817 7829 7841 7853 3307 3319 3331 3343 11777 11789 11801 11813 3547 3559 3571 3583 12577 12589 12601 12613 3907 3919 3931 3943 15137 15149 15161 15173 4987 4999 5011 5023 15737 15749 15761 15773 5407 5419 5431 5443 15877 15889 15901 15913 6287 6299 6311 6323 19937 19949 19961 19973 6947 6959 6971 6983 21577 21589 21601 21613 10067 10079 10091 10103 23017 23029 23041 23053 10627 10639 10651 10663 24097 24109 24121 24133 11047 11059 11071 11083 36017 36	7297	<i>7309</i>	7321	7333	1487	1499	1511	1523
11777 11789 11801 11813 3547 3559 3571 3583 12577 12589 12601 12613 3907 3919 3931 3943 15137 15149 15161 15173 4987 4999 5011 5023 15737 15749 15761 15773 5407 5419 5431 5443 15877 15889 15901 15913 6287 6299 6311 6323 19937 19949 19961 19973 6947 6959 6971 6983 21577 21589 21601 21613 10067 10079 10091 10103 23017 23029 23041 23053 10627 10639 10651 10663 24097 24109 24121 24133 11047 11059 11071 11083 26017 26029 26041 26053 12227 12239 12251 12263 30817	<i>7537</i>	7549	<i>7561</i>	7573	2647	2659	<i>2671</i>	2683
12577 12589 12601 12613 3907 3919 3931 3943 15137 15149 15161 15173 4987 4999 5011 5023 15737 15749 15761 15773 5407 5419 5431 5443 15877 15889 15901 15913 6287 6299 6311 6323 19937 19949 19961 19973 6947 6959 6971 6983 21577 21589 21601 21613 10067 10079 10091 10103 23017 23029 23041 23053 10627 10639 10651 10663 24097 24109 24121 24133 11047 11059 11071 11083 26017 26029 26041 26053 12227 12239 12251 12263 30817 30829 30841 30853 13147 13159 13171 13183 3517	7817	7829	<i>7841</i>	7853	3307	3319	3331	3343
15137 15149 15161 15173 4987 4999 5011 5023 15737 15749 15761 15773 5407 5419 5431 5443 15877 15889 15901 15913 6287 6299 6311 6323 19937 19949 19961 19973 6947 6959 6971 6983 21577 21589 21601 21613 10067 10079 10091 10103 23017 23029 23041 23053 10627 10639 10651 10663 24097 24109 24121 24133 11047 11059 11071 11083 26017 26029 26041 26053 12227 12239 12251 12263 30817 30829 30841 30853 13147 13159 13171 13183 35517 35189 33601 33613 14747 14759 14771 14783 35147 <th>11777</th> <th>11789</th> <th>11801</th> <th>11813</th> <th>3547</th> <th>3559</th> <th>3571</th> <th>3583</th>	11777	11789	11801	11813	3547	3559	3571	3583
15737 15749 15761 15773 5407 5419 5431 5443 15877 15889 15901 15913 6287 6299 6311 6323 19937 19949 19961 19973 6947 6959 6971 6983 21577 21589 21601 21613 10067 10079 10091 10103 23017 23029 23041 23053 10627 10639 10651 10663 24097 24109 24121 24133 11047 11059 11071 11083 26017 26029 26041 26053 12227 12239 12251 12263 30817 30829 30841 30853 13147 13159 13171 13183 35177 35189 33601 33613 14747 14759 14771 14783 35117 35129 35141 35153 17827 17839 17851 17863 41177	12577	12589	<i>12601</i>	12613	3907	3919	3931	<i>3943</i>
15877 15889 15901 15913 6287 6299 6311 6323 19937 19949 19961 19973 6947 6959 6971 6983 21577 21589 21601 21613 10067 10079 10091 10103 23017 23029 23041 23053 10627 10639 10651 10663 24097 24109 24121 24133 11047 11059 11071 11083 26017 26029 26041 26053 12227 12239 12251 12263 30817 30829 30841 30853 13147 13159 13171 13183 35177 33589 33601 33613 14747 14759 14771 14783 35117 35129 35141 35153 17827 17839 17851 17863 37537 37549 37561 37573 19727 19739 19751 19763 4	15137	15149	<i>15161</i>	15173	4987	4999	5011	5023
19937 19949 19961 19973 6947 6959 6971 6983 21577 21589 21601 21613 10067 10079 10091 10103 23017 23029 23041 23053 10627 10639 10651 10663 24097 24109 24121 24133 11047 11059 11071 11083 26017 26029 26041 26053 12227 12239 12251 12263 30817 30829 30841 30853 13147 13159 13171 13183 35517 35589 33601 33613 14747 14759 14771 14783 35117 35129 35141 35153 17827 17839 17851 17863 37537 37549 37561 37573 19727 19739 19751 19763 41177 41189 41201 41213 20707 20719 20731 20743 <	15737	15749	15761	15773	5407	5419	5431	5443
21577 21589 21601 21613 10067 10079 10091 10103 23017 23029 23041 23053 10627 10639 10651 10663 24097 24109 24121 24133 11047 11059 11071 11083 26017 26029 26041 26053 12227 12239 12251 12263 30817 30829 30841 30853 13147 13159 13171 13183 35577 33589 33601 33613 14747 14759 14771 14783 35117 35129 35141 35153 17827 17839 17851 17863 37537 37549 37561 37573 19727 19739 19751 19763 41177 41189 41201 41213 20707 20719 20731 20743 42157 42169 42181 42193 22027 22039 22051 22063	15877	15889	<i>15901</i>	15913	6287	6299	6311	6323
23017 23029 23041 23053 10627 10639 10651 10663 24097 24109 24121 24133 11047 11059 11071 11083 26017 26029 26041 26053 12227 12239 12251 12263 30817 30829 30841 30853 13147 13159 13171 13183 33577 33589 33601 33613 14747 14759 14771 14783 35117 35129 35141 35153 17827 17839 17851 17863 37537 37549 37561 37573 19727 19739 19751 19763 41177 41189 41201 41213 20707 20719 20731 20743 42157 42169 42181 42193 22027 22039 22051 22063 44257 44269 44281 44293 26687 26699 26711 26723 51437 5149 51461 51473 27767 27779 27791 <td< th=""><th>19937</th><th>19949</th><th>19961</th><th>19973</th><th>6947</th><th>6959</th><th><i>6971</i></th><th><i>6983</i></th></td<>	19937	19949	19961	19973	6947	6959	<i>6971</i>	<i>6983</i>
24097 24109 24121 24133 11047 11059 11071 11083 26017 26029 26041 26053 12227 12239 12251 12263 30817 30829 30841 30853 13147 13159 13171 13183 33577 33589 33601 33613 14747 14759 14771 14783 35117 35129 35141 35153 17827 17839 17851 17863 37537 37549 37561 37573 19727 19739 19751 19763 41177 41189 41201 41213 20707 20719 20731 20743 42157 42169 42181 42193 22027 22039 22051 22063 44017 44029 44041 44053 22247 22259 22271 22283 51437 51449 51461 51473 27767 27779 27791 27803 52517 52529 52541 52553 28087 28099 28111 <t< th=""><th>21577</th><th>21589</th><th>21601</th><th>21613</th><th>10067</th><th>10079</th><th>10091</th><th>10103</th></t<>	21577	21589	21601	21613	10067	10079	10091	10103
26017 26029 26041 26053 12227 12239 12251 12263 30817 30829 30841 30853 13147 13159 13171 13183 33577 33589 33601 33613 14747 14759 14771 14783 35117 35129 35141 35153 17827 17839 17851 17863 37537 37549 37561 37573 19727 19739 19751 19763 41177 41189 41201 41213 20707 20719 20731 20743 42157 42169 42181 42193 22027 22039 22051 22063 44017 44029 44041 44053 22247 22259 22271 22283 44257 44269 44281 44293 26687 26699 26711 26723 51437 51449 51461 51473 27767 27779 27791 27803 52517 52529 52541 52553 28087 28099 28111 <t< th=""><th>23017</th><th>23029</th><th>23041</th><th>23053</th><th>10627</th><th>10639</th><th>10651</th><th>10663</th></t<>	23017	23029	23041	23053	10627	10639	10651	10663
30817 30829 30841 30853 13147 13159 13171 13183 33577 33589 33601 33613 14747 14759 14771 14783 35117 35129 35141 35153 17827 17839 17851 17863 37537 37549 37561 37573 19727 19739 19751 19763 41177 41189 41201 41213 20707 20719 20731 20743 42157 42169 42181 42193 22027 22039 22051 22063 44017 44029 44041 44053 22247 22259 22271 22283 44257 44269 44281 44293 26687 26699 26711 26723 51437 51449 51461 51473 27767 27779 27791 27803 52517 52529 52541 52553 28087 28099 28111 28123 52697 52709 52721 52733 28607 28619 28631 <t< th=""><th>24097</th><th>24109</th><th>24121</th><th>24133</th><th>11047</th><th>11059</th><th>11071</th><th>11083</th></t<>	24097	24109	24121	24133	11047	11059	11071	11083
33577 33589 33601 33613 14747 14759 14771 14783 35117 35129 35141 35153 17827 17839 17851 17863 37537 37549 37561 37573 19727 19739 19751 19763 41177 41189 41201 41213 20707 20719 20731 20743 42157 42169 42181 42193 22027 22039 22051 22063 44017 44029 44041 44053 22247 22259 22271 22283 44257 44269 44281 44293 26687 26699 26711 26723 51437 51449 51461 51473 27767 27779 27791 27803 52517 52529 52541 52553 28087 28099 28111 28123 52697 52709 52721 52733 28607 28619 28631 28643 59197 59209 59221 59233 32467 32479 32491 <t< th=""><th>26017</th><th>26029</th><th>26041</th><th>26053</th><th>12227</th><th>12239</th><th>12251</th><th>12263</th></t<>	26017	26029	26041	26053	12227	12239	12251	12263
35117 35129 35141 35153 17827 17839 17851 17863 37537 37549 37561 37573 19727 19739 19751 19763 41177 41189 41201 41213 20707 20719 20731 20743 42157 42169 42181 42193 22027 22039 22051 22063 44017 44029 44041 44053 22247 22259 22271 22283 44257 44269 44281 44293 26687 26699 26711 26723 51437 51449 51461 51473 27767 27779 27791 27803 52517 52529 52541 52553 28087 28099 28111 28123 52697 52709 52721 52733 28607 28619 28631 28643 53077 53089 53101 53113 29387 29399 29411 29423	30817	30829	30841	30853	13147	13159	13171	13183
37537 37549 37561 37573 19727 19739 19751 19763 41177 41189 41201 41213 20707 20719 20731 20743 42157 42169 42181 42193 22027 22039 22051 22063 44017 44029 44041 44053 22247 22259 22271 22283 44257 44269 44281 44293 26687 26699 26711 26723 51437 51449 51461 51473 27767 27779 27791 27803 52517 52529 52541 52553 28087 28099 28111 28123 52697 52709 52721 52733 28607 28619 28631 28643 53077 53089 53101 53113 29387 29399 29411 29423 59197 59209 59221 59233 32467 32479 32491 32503 71317 71329 71341 71353 34147 34159 34171 <t< th=""><th>33577</th><th>33589</th><th>33601</th><th>33613</th><th>14747</th><th>14759</th><th>14771</th><th>14783</th></t<>	33577	33589	33601	33613	14747	14759	14771	14783
41177 41189 41201 41213 20707 20719 20731 20743 42157 42169 42181 42193 22027 22039 22051 22063 44017 44029 44041 44053 22247 22259 22271 22283 44257 44269 44281 44293 26687 26699 26711 26723 51437 51449 51461 51473 27767 27779 27791 27803 52517 52529 52541 52553 28087 28099 28111 28123 52697 52709 52721 52733 28607 28619 28631 28643 53077 53089 53101 53113 29387 29399 29411 29423 59197 59209 59221 59233 32467 32479 32491 32503 71317 71329 71341 71353 34147 34159 34171 34183 75617 75629 75641 75653 40087 40099 40111 <t< th=""><th>35117</th><th>35129</th><th><i>35141</i></th><th>35153</th><th>17827</th><th><i>17839</i></th><th>17851</th><th><i>17863</i></th></t<>	35117	35129	<i>35141</i>	35153	17827	<i>17839</i>	17851	<i>17863</i>
42157 42169 42181 42193 22027 22039 22051 22063 44017 44029 44041 44053 22247 22259 22271 22283 44257 44269 44281 44293 26687 26699 26711 26723 51437 51449 51461 51473 27767 27779 27791 27803 52517 52529 52541 52553 28087 28099 28111 28123 52697 52709 52721 52733 28607 28619 28631 28643 53077 53089 53101 53113 29387 29399 29411 29423 59197 59209 59221 59233 32467 32479 32491 32503 71317 71329 71341 71353 34147 34159 34171 34183 75617 75629 75641 75653 40087 40099 40111 40123 81737 81749 81761 81773 40507 40519 40531 <t< th=""><th><i>37537</i></th><th>37549</th><th>37561</th><th>37573</th><th>19727</th><th>19739</th><th>19751</th><th>19763</th></t<>	<i>37537</i>	37549	37561	37573	19727	19739	19751	19763
44017 44029 44041 44053 22247 22259 22271 22283 44257 44269 44281 44293 26687 26699 26711 26723 51437 51449 51461 51473 27767 27779 27791 27803 52517 52529 52541 52553 28087 28099 28111 28123 52697 52709 52721 52733 28607 28619 28631 28643 53077 53089 53101 53113 29387 29399 29411 29423 59197 59209 59221 59233 32467 32479 32491 32503 71317 71329 71341 71353 34147 34159 34171 34183 75617 75629 75641 75653 40087 40099 40111 40123 81737 81749 81761 81773 40507 40519 40531 40543 89797 89809 89821 89833 44507 44519 44531 <t< th=""><th>41177</th><th>41189</th><th>41201</th><th>41213</th><th>20707</th><th>20719</th><th>20731</th><th>20743</th></t<>	41177	41189	41201	41213	20707	20719	20731	20743
44257 44269 44281 44293 26687 26699 26711 26723 51437 51449 51461 51473 27767 27779 27791 27803 52517 52529 52541 52553 28087 28099 28111 28123 52697 52709 52721 52733 28607 28619 28631 28643 53077 53089 53101 53113 29387 29399 29411 29423 59197 59209 59221 59233 32467 32479 32491 32503 71317 71329 71341 71353 34147 34159 34171 34183 75617 75629 75641 75653 40087 40099 40111 40123 81737 81749 81761 81773 40507 40519 40531 40543 89797 89809 89821 89833 44507 44519 44531 44543 92557 92569 92581 92593 48847 48859 48871 <t< th=""><th>42157</th><th>42169</th><th>42181</th><th>42193</th><th>22027</th><th>22039</th><th>22051</th><th>22063</th></t<>	42157	42169	42181	42193	22027	22039	22051	22063
51437 51449 51461 51473 27767 27779 27791 27803 52517 52529 52541 52553 28087 28099 28111 28123 52697 52709 52721 52733 28607 28619 28631 28643 53077 53089 53101 53113 29387 29399 29411 29423 59197 59209 59221 59233 32467 32479 32491 32503 71317 71329 71341 71353 34147 34159 34171 34183 75617 75629 75641 75653 40087 40099 40111 40123 81737 81749 81761 81773 40507 40519 40531 40543 89797 89809 89821 89833 44507 44519 44531 44543 92557 92569 92581 92593 48847 48859 48871 48883	44017	44029	44041	44053	22247	22259	22271	22283
52517 52529 52541 52553 28087 28099 28111 28123 52697 52709 52721 52733 28607 28619 28631 28643 53077 53089 53101 53113 29387 29399 29411 29423 59197 59209 59221 59233 32467 32479 32491 32503 71317 71329 71341 71353 34147 34159 34171 34183 75617 75629 75641 75653 40087 40099 40111 40123 81737 81749 81761 81773 40507 40519 40531 40543 89797 89809 89821 89833 44507 44519 44531 44543 92557 92569 92581 92593 48847 48859 48871 48883	44257	44269	44281	44293	26687	26699	26711	26723
52697 52709 52721 52733 28607 28619 28631 28643 53077 53089 53101 53113 29387 29399 29411 29423 59197 59209 59221 59233 32467 32479 32491 32503 71317 71329 71341 71353 34147 34159 34171 34183 75617 75629 75641 75653 40087 40099 40111 40123 81737 81749 81761 81773 40507 40519 40531 40543 89797 89809 89821 89833 44507 44519 44531 44543 92557 92569 92581 92593 48847 48859 48871 48883	51437	51449	51461	51473	27767	27779	27791	27803
53077 53089 53101 53113 29387 29399 29411 29423 59197 59209 59221 59233 32467 32479 32491 32503 71317 71329 71341 71353 34147 34159 34171 34183 75617 75629 75641 75653 40087 40099 40111 40123 81737 81749 81761 81773 40507 40519 40531 40543 89797 89809 89821 89833 44507 44519 44531 44543 92557 92569 92581 92593 48847 48859 48871 48883	52517	52529	52541	52553	28087	28099	28111	28123
59197 59209 59221 59233 32467 32479 32491 32503 71317 71329 71341 71353 34147 34159 34171 34183 75617 75629 75641 75653 40087 40099 40111 40123 81737 81749 81761 81773 40507 40519 40531 40543 89797 89809 89821 89833 44507 44519 44531 44543 92557 92569 92581 92593 48847 48859 48871 48883	52697	<i>52709</i>	52721	52733	28607	28619	28631	28643
71317 71329 71341 71353 34147 34159 34171 34183 75617 75629 75641 75653 40087 40099 40111 40123 81737 81749 81761 81773 40507 40519 40531 40543 89797 89809 89821 89833 44507 44519 44531 44543 92557 92569 92581 92593 48847 48859 48871 48883	53077	53089	<i>53101</i>	53113	29387	29399	29411	29423
75617 75629 75641 75653 40087 40099 40111 40123 81737 81749 81761 81773 40507 40519 40531 40543 89797 89809 89821 89833 44507 44519 44531 44543 92557 92569 92581 92593 48847 48859 48871 48883	59197	<i>59209</i>	<i>59221</i>	59233	32467	32479	32491	32503
81737 81749 81761 81773 40507 40519 40531 40543 89797 89809 89821 89833 44507 44519 44531 44543 92557 92569 92581 92593 48847 48859 48871 48883	71317	71329	71341	71353	34147	34159	34171	34183
89797 89809 89821 89833 44507 44519 44531 44543 92557 92569 92581 92593 48847 48859 48871 48883	75617	75629	<i>75641</i>		40087	40099	40111	40123
92557 92569 92581 92593 48847 48859 48871 48883							40531	
92657 92669 92681 92693 57107 57119 57131 57143								
	92657	92669	92681	92693	57107	57119	57131	57143

Отклонение значений таблицы 3 от кривых регрессионного анализа составляет величину в несколько сотен, либо тысяч единиц на уровне значений 150000. Это существенно ускоряет процесс расчета значения простых чисел, при отыскании новых четверок большей размерности. Интервалы между числами принимают значения 6, 12, 18, 24, 30, ...

При этом для одного и того же интервала правая часть всех соотношений данной частью таблицы остается постоянной и равной квадрату удвоенного значения интервала $(12^2, 24^2, 36^2, 48^2, 60^2, \ldots)$, таблица 4.

рис.1 Разброс значений простых чисел

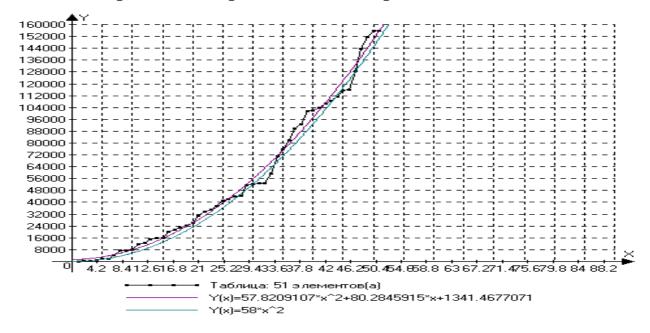


Таблица 4.

11	17	23	29	1^2	144	12^2	41	47	53	59
251	257	<i>263</i>	269	1^2	144	12^2	61	<i>67</i>	73	<i>79</i>
1091	1097	1103	1109	1^2	144	12^2	601	<i>607</i>	<i>613</i>	619
2371	2377	2383	2389	1^2	144	12^2	<i>641</i>	<i>647</i>	<i>653</i>	659
2671	<i>2677</i>	<i>2683</i>	<i>2689</i>	1^2	144	12^2	1601	<i>1607</i>	<i>1613</i>	1619
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
17	29	41	53	2^2	<i>576</i>	24^{2}	7	19	31	43
257	269	281	293	2^2	<i>576</i>	24^{2}	47	59	71	83
397	409	421	433	2^2	<i>576</i>	24^{2}	127	139	151	163
997	1009	<i>1021</i>	1033	2^2	<i>576</i>	24^{2}	227	239	251	263
1697	1709	<i>1721</i>	<i>1733</i>	2^2	<i>576</i>	24^{2}	467	479	491	503
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
43	61	<i>79</i>	97	3^2	1296	36 ²	53	<i>71</i>	89	<i>107</i>
1583	<i>1601</i>	1619	<i>1637</i>	3^2	1296	36^2	113	131	149	<i>167</i>
1723	<i>1741</i>	1759	1777	3^2	1296	36 ²	313	331	349	367
2143	2161	2179	2197	3^2	1296	36^2	<i>673</i>	<i>691</i>	<i>709</i>	727
2423	2441	2459	2477	3^2	1296	36^2	733	<i>751</i>	<i>769</i>	<i>787</i>
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
349	373	<i>397</i>	421	4 ²	2304	48 ²	59	83	<i>107</i>	131
569	<i>593</i>	<i>617</i>	641	4 ²	2304	48 ²	<i>79</i>	<i>103</i>	127	151
1399	1423	1447	1471	4^2	2304	48 ²	419	443	<i>467</i>	491
2039	2063	2087	2111	4 ²	2304	48 ²	499	523	547	571
2659	<i>2683</i>	<i>2707</i>	<i>2731</i>	4 ²	2304	48 ²	839	<i>863</i>	887	911
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
137	167	197	227	5^2	3600	60^2	7	37	<i>67</i>	97
277	<i>307</i>	337	<i>367</i>	5^2	3600	60^2	107	137	<i>167</i>	197
797	827	857	887	5^2	3600	60^2	907	937	967	997
2617	<i>2647</i>	<i>2677</i>	2707	5^2	3600	60^2	1607	<i>1637</i>	<i>1667</i>	1697
6337	6367	6397	6427	5^2	3600	60^2	2207	2237	2267	2297
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••

Особенности таблицы 4 состоят в следующем:

- Интервал между соседними точками может меняться от 6 до бесконечности.
- Интервал между соседними строками принимает различные значения, что создает определенные трудности при нахождении следующей четверки чисел.
- Четверки простых чисел формируют различные последовательности каждые из интервалов.
- Определители между соседними строками являются одной и той же величиной, характеризуемой значением n^2 , пропорционально числу 72. Эта величина, например, 11*29-17*23=72 пропорциональна двум сумм квадрата чисел конкретной четверки и является квадратом удвоенного интервала между числами (например, $(11^2+29^2)-(17^2+23^2)=12^2$).
- Последняя алгебраическая сумма показывает псевдоевклидов характер двух сумм квадратов, что может являться соотношением псевдоевклидовой геометрии индекса 2.

Таким образом, данные наборы четверок простых чисел создают последовательности координат в пятимерном псевдоевклидовом пространстве в целых числах. При этом имеет место постоянство значения правой части соотношений. Например,

и т.д.

Аналогичная картина наблюдается для значения интервала не равного 12. Наборы четверок простых чисел встречаются значительно реже значений простых чисел. Для простых чисел до значения 60000 встречается около 300 четверок с интервалом 12, т.е. в среднем одна четверка встречается один раз из 200 чисел.

Таблица 5

													отпіц	
487	487	487	487	487	487	487	 487	487	487	487	487	487	487	
751	<i>3631</i>	6271	<i>15031</i>	16231	17431	17491	 601	1021	7681	9001	<i>12301</i>	15541	18121	
1069	6829	12109	29629	32029	34429	34549	 769	1609	14929	17569	24169	30649	35809	
1123	6883	12163	29683	32083	34483	34603	 823	1663	14983	17623	24223	30703	35863	
859	3739	6379	15139	16339	17539	17599	 709	1129	<i>7789</i>	9109	12409	15649	18229	
541	541	541	541	541	541	541	 541	541	541	541	541	541	541	•••
487	487	487	487	487	487	487	 487	487	487	487	487	487	487	
433	2053	2113	7573	16633	19273	21013	 223	643	1063	4723	10723	13063	22003	
433	3673	3793	14713	32833	38113	41593	 13	853	1693	9013	21013	25693	43573	
487	3727	3847	14767	32887	38167	41647	 67	907	1747	9067	21067	25747	43627	
541	2161	2221	7681	16741	19381	21121	 331	<i>751</i>	1171	4831	10831	13171	22111	•••
541	<i>541</i>	541	541	541	541	541	 541	541	541	541	541	541	541	

Простые числа дают возможность получить замечательный результат. Они могут создавать последовательности из шести простых чисел с одним и тем же рекуррентным соотношением. В таблице 5 приведены четыре блока последовательности шестерок простых чисел, сформированных с помощью рекуррентного соотношения, действующего в вертикальном направлении:

$$P_{n+1}=2*(P_n-P_{n-1})+P_{n-2}$$

Так что имеем, например,

```
2*(859-541)+487=1123,

2*(1123-859)+541=1069,

2*(1069-1123)+859=751,

2*(751-1069)+1123=487,

2*(487-751)+1069=541,

2*(541-487)+751=859.
```

Круг замкнулся. Все попытки изменить ситуацию оказываются неудачными. Отметим, что все числа кольцевой последовательности являются простыми. Это создает предпосылки для использования их задачи криптографии. Вместе с тем сами последовательности колец простых чисел следуют с непостоянным интервалом между соседними кольцами, поэтому наблюдается разброс чисел и ухудшается прогноз очередных числовых значений. Разброс чисел достигает нескольких чисел единиц на уровне 40000 (рис. 2).

Важной особенностью рассмотренных последовательностей является равенство сумм квадратов чересстрочных разверток составляющих эти последовательности. Так, например, числа 4872+132+3312=346899

Разность левых частей этих формул равна нулю, что можно представить, как целочисленное значение шестимерной псевдоевклидовой величины индекса 2 (табл. 6).

Изменение последовательностей простых чисел

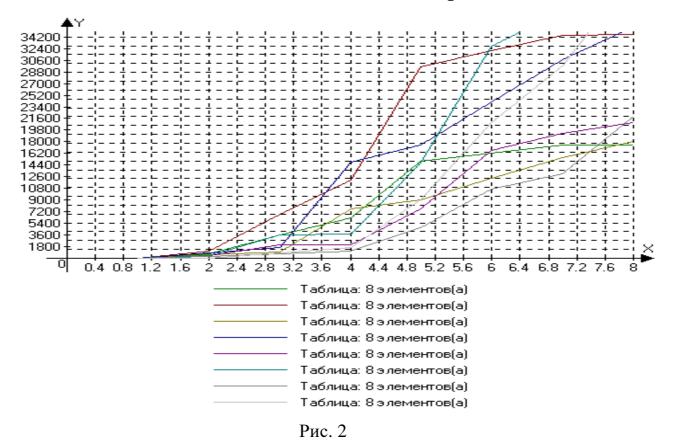


Таблица 6.

•••	•••	•••	•••	•••	•••
<i>751</i>	1171	4831	10831	13171	22111
<i>541</i>	541	<i>541</i>	<i>541</i>	<i>541</i>	<i>541</i>
487	487	487	487	487	487
<i>643</i>	1063	4723	10723	13063	22003
853	1693	9013	21013	25693	43573
907	1747	9067	21067	25747	43627
<i>751</i>	1171	4831	10831	13171	22111
<i>541</i>	<i>541</i>	<i>541</i>	<i>541</i>	<i>541</i>	<i>541</i>
487	487	487	487	487	487
<i>643</i>	1063	4723	10723	13063	22003
•••	•••	•••	•••	•••	•••
1528779	4474659	1,05E+08	5,59E+08	8,34E+08	2,39E+09
1528779	4474659	1,05E+08	5,59E+08	8,34E+08	2,39E+09
	751 541 487 643 853 907 751 541 487 643 	751 1171 541 541 487 487 643 1063 853 1693 907 1747 751 1171 541 541 487 487 643 1063 	751 1171 4831 541 541 541 487 487 487 643 1063 4723 853 1693 9013 907 1747 9067 751 1171 4831 541 541 541 487 487 487 643 1063 4723 1528779 4474659 1,05E+08	751 1171 4831 10831 541 541 541 541 487 487 487 487 643 1063 4723 10723 853 1693 9013 21013 907 1747 9067 21067 751 1171 4831 10831 541 541 541 541 487 487 487 487 643 1063 4723 10723 1528779 4474659 1,05E+08 5,59E+08	751 1171 4831 10831 13171 541 541 541 541 541 487 487 487 487 487 643 1063 4723 10723 13063 853 1693 9013 21013 25693 907 1747 9067 21067 25747 751 1171 4831 10831 13171 541 541 541 541 541 487 487 487 487 487 643 1063 4723 10723 13063 1528779 4474659 1,05E+08 5,59E+08 8,34E+08

Аналогично получаются суммы квадратов целых чисел чересстрочной разверткой остальных величин. Необходимо отметить, что циклическое повторение кольцевых последовательностей имеют место не только в случае простых чисел, но и составных, хотя интерес представляет именно простые числа. Отметим также, что последовательности колец простых чисел являются достаточно редким явлением. Так в приведенных последовательностях встречаются кольца чисел в среднем одно на три-шесть тысяч единиц.

Характер, изменения значений последовательностей колец простых чисел показан в [3]. В ней показано достаточно странное поведение последовательностей. Вместе с тем разброс чисел относительно невелик так, что можно найти характер изменения колец простых чисел, что важно для применения их в задачах криптографии и позволяет делать прогнозы по местонахождения следующих колец простых чисел.

Литература

- 1. Коротков А.В. Элементы классификации пифагоровых чисел. Новочеркасск: Набла, 2009. 73 с.
- 2. Коротков А.В. Алгебры над кольцом чисел Пифагора. Сознание и физическая реальность т.16, №11 2011. 17-30 с
- 3. Коротков А.В. Связь чисел Пифагора и Диофанта. Журнал Альманах современной науки и образования. Данный выпуск. 2013г.-13 стр.

Глава 7

УДК 512/7

Физико-математические науки.

В статье рассматриваются вопросы построения связи между последовательностями чисел Пифагора и Диофанта, а также показана возможность построения совершенно новых математических объектов таких, как кольца простых чисел, и последовательности этих колец в рамках евклидовых и псевдоевклидовых представлений. Приведены примеры числовых колец из 25-ти чисел с восьмерками Пифагора и 16-тью числами Диофанта, и характерным числом. Эти кольца замкнуты, создают последовательности и могут иметь отношение к природным явлениям, в частности, к построению календаря.

Коротков Анатолий Васильевич, к.т.н., д.ф.-м.н., доцент., Акад. МАСИ.

Международный центр теоретической физики, г. Новочеркасск

адрес: avkorotkov1945@yandex.ru

Ключевые слова и фразы: простые числа, кольца простых чисел, последовательности простых чисел и колец, кольца из 25-ти чисел, восемь чисел Пифагора, шестнадцать чисел Диофанта, связь чисел, пример календаря.

Связь чисел Пифагора и Диофанта

©2013г., А.В. Коротков

Международный центр теоретической физики (2^n -1-D технологии), г. Новочеркасск

$$\begin{vmatrix} 3-D & 2^m-1 & 2n+1 \\ 2n+1 & 7-D & 2^m-1 \\ 2^m-1 & 2n+1 & 15-D \end{vmatrix}$$

Последовательности чисел Пифагора приведены в [1]. Они наводят на мысль, что подобные последовательности могут быть построены для чисел Фибоначчи и чисел Диофанта. В таком случае удалось бы установить связь этих чисел между собой. Для чисел Пифагора существует зависимость

$$(2mn)^2+(m^2-n^2)^2=(m^2+n^2)^2$$
,

удовлетворяющая знаменитому соотношению

$$x^2+y^2=z^2$$
,

где x, y, z, стороны прямоугольного треугольника.

Вместо параметров m, n можно задействовать параметры h и g [1], что дает тождество

$$(2*h^2+2*hg+g^2)^2=(2*hg+g^2)^2+(2*hg^2+2*hg)^2$$
.

Причем, $h=0,1,2,\ldots$, - числа натурального ряда. $g=1,3,5,\ldots$, - нечетные числа. При этом g и h — взаимно простые числа. Для чисел n, m, h, g, x, y, z характерны соотношения

$$(2h_k*h_{k-1})^2 + (h_k^2 - h_{k-1}^2)^2 = (h_k^2 + h_{k-1}^2)^2$$

$$(2g_k*g_{k-1})^2 + (g_k^2 - g_{k-1}^2)^2 = (g_k^2 + g_{k-1}^2)^2$$

$$(2m_k*m_{k-1})^2 + (m_k^2 - m_{k-1}^2)^2 = (m_k^2 + m_{k-1}^2)^2$$

$$(2n_k*n_{k-1})^2 + (n_k^2 - n_{k-1}^2)^2 = (n_k^2 + n_{k-1}^2)^2$$

Причем

$$(2x_k*x_{k-1})^2+(x_k^2-x_{k-1}^2)^2=(x_k^2+x_{k-1}^2)^2$$
 $(2y_k*y_{k-1})^2+(y_k^2-y_{k-1}^2)^2=(y_k^2+y_{k-1}^2)^2$
 $(2z_k*z_{k-1})^2+(z_k^2-z_{k-1}^2)^2=(z_k^2+z_{k-1}^2)^2$.

 $h=1,3,7,17,...,$ и $h_{k+1}=2h_k+h_{k-1},$
 $g=0,1,2,5,...,$ и $g_{k+1}=2g_k+g_{k-1},$
 $m=0,1,2,5,...,$ и $m_{k+1}=2m_k+m_{k-1},$
 $n=1,3,7,17,...,$ и $n_{k+1}=2n_k+n_{k-1},$
 $x=1,3,21,119,...,$ и $x_{k+1}=5(x_k+x_{k-1})-x_{k-2},$
 $y=0,4,20,120,...,$ и $y_{k+1}=5(y_k+y_{k-1})-y_{k-2},$
 $z=1,5,29,169,...,$ и $z_{k+1}=6z_k-z_{k-1}.$

Всем указанным величинам соответствует уравнение Диофанта или Пифагора. Так

$$g_{k}^{2}-2h_{k}^{2} = \pm d_{k}^{2}$$

$$n_{k}^{2}-2m_{k}^{2} = \pm d_{k}^{2}$$
...
$$x_{k}^{2}+y_{k}^{2}=z_{k}^{2}$$

При этом, формируются ряды бесконечной длины, причем d_k =1, 7, 17, 23, 31,... так что эти числа относятся к числам типа $8*n \pm 1$, причем задействован квадрат модуля разности двух катетов.

Для чисел Диофанта существует зависимость,

$$m^2-2*n^2=\pm d^2$$
,

где т, п-параметры уравнения.

Характерно, что числа Диофанта и числа Пифагора якобы независимы друг от друга, что определяется видом уравнений Пифагора и Диофанта. Однако, как показано в [2], это не совсем справедливо. Так тройки Пифагора соответствуют сторонам прямоугольных треугольников, трем формируется бесконечное число пифагоровых троек. Числа Диофанта также формируются из трех величин, совершенно не соответствующих тройкам Пифагора. Однако это заблуждение - как числа Пифагора, так и числа Диофанта составляют более сложную структуру. В [3] указано о формировании колец чисел и последовательностей из них. При этом, числа Пифагора и Диофанта образуют пятерки или семерки целых чисел, два или четыре из которых удовлетворяют уравнению Диофанта. Так, например, числа 16, 63, 65, 91, 13 относятся к одной и той же пятерке Пифагора-Диофанта. В последней при множителе -2 стоит число 65, а без множителя- числа 91 или 13. В результате для этой пятерки чисел можно записать два уравнения Диофанта.

Числа Пифагора и Диофанта, как выясняется, при этом также могут быть расширены. Пять составляющих, с одной определяющей величиной могут быть дополнены, по крайней мере, еще парой целых чисел, при этом имеют место четыре уравнения Диофанта и четыре уравнения Пифагора (таблица 1).

Таблица 1

\boldsymbol{x}	y	z	c	dzc	р	t	dpt
697	696	985	1393	-1	2378	3363	1
119	120	169	239	1	408	577	1
21	20	29	41	-1	70	99	1
3	4	5	7	1	12	17	1
1	0	1	1	-1	2	3	1
-1	0	1	-1	1	0	1	1
-3	-4	5	-7	-1	-2	3	1
-21	-20	29	-41	1	-12	17	1
-119	-120	169	-239	-1	-70	99	1
-697	-696	985	-1393	1	-408	577	1

Для случая характеризующего числа, равного 65 имеем:

$$13^{2} - 2*65^{2} = -91^{2}$$
, $63^{2} + 16^{2} = 65^{2}$, $25^{2} - 2*65^{2} = -89^{2}$, $25^{2} + 60^{2} = 65^{2}$, $35^{2} - 2*65^{2} = -85^{2}$, $33^{2} + 56^{2} = 65^{2}$, $47^{2} - 2*65^{2} = -79^{2}$, $39^{2} + 52^{2} = 65^{2}$,

Однако, как легко показать, величины сумм разностей квадратов аргументов определяются двумя переменными уравнений Диофанта и этими же переменными уравнений Пифагора. Эти уравнения пропорциональны трем сторонам прямоугольных треугольников. Так величине взаимно не простых троек Пифагора (25, 60, 65) соответствует величина 5*(5, 12, 13), а тройка Пифагора (39, 52, 65) соответствует величина 13*(3, 4, 5), причем произведение 5*13 соответствует разложению числа 65. При этом характерны четыре тройки Пифагора (16, 63, 65), (25, 60, 65), (39, 52, 65). Характеризующее число, как и раньше, равно 65 (таблица 2). Например, для пятиэлементной системы имеем совокупность четырех пятерок чисел, числа Пифагора-Диофанта.

			Табл	тица 2
16	63	65	91	13
25	<i>60</i>	65	89	23
33	<i>56</i>	65	85	35
39	52	65	<i>79</i>	47
65	0	65		

Левая сторона таблицы 2 соответствует четырем тройкам Пифагора, а правая сторона- четырем тройкам Диофанта. Суммы и разности компонентов левой стороны таблицы определяют величины компонентов правой стороны таблицы. Вместе с этим правая сторона таблицы определяет четверку чисел

Диофанта. Полусуммы и полуразности компонентов правой стороны этой таблицы, определяют компоненты левой стороны таблицы.

Такова жесткая взаимосвязь пяти компонентов каждой строки таблицы Диофанта-Пифагора включающих, два числа, удовлетворяющих уравнению Пифагора, два числа, соответствующих уравнению Диофанта и одно характеризующее число (гипотенузу четырех треугольников, таблица 3).

Таблица 3

16	63	13	84	17	144	57	176
25	60	36	<i>77</i>	24	143	<i>60</i>	175
33	56	51	<i>68</i>	105	100	104	153
39	52	40	75	116	87	111	148
65	0	85	0	145	0	185	0
91	13	119	17	205	5	259	37
89	23	115	35	203	29	257	49
85	35	113	41	<i>167</i>	119	235	115
79	47	<i>97</i>	71	161	127	233	119

Таким образом, одна из компонентов является определяющей. Для первой пары столбцов — это число 65. Оно является общим для таблиц Диофанта и Пифагора. В таком случае, необходимо вести речь о 5-ти числах Пифагора — Диофанта. В таблице 3 приведены значения чисел Пифагора и Диофанта, для других определяющих величин (65, 85, 145, 185, ...). Отметим, что числа, относящиеся к таблице Диофанта, линейно зависят от чисел Пифагора так, что суммы и разности чисел дают один и тот же набор из пяти составляющих. Два столбца чисел Пифагора (таблица 3) включают восемь чисел так, что реально задача нахождения чисел Пифагора-Диофанта сводится к нахождению восьми чисел составляющих четыре пифагоровых тройки с одной и той же гипотенузой (205, 221, 265, 305, ...) (таблица 4).

Таблица 4

45	200	21	220	23	264	55	300
84	187	85	204	96	247	<i>136</i>	273
133	156	<i>104</i>	195	140	225	183	244
123	164	140	171	159	212	207	224
205	0	221	0	265	0	305	0
289	23	311	31	371	53	431	17
287	41	299	91	365	85	427	61
271	103	289	119	343	151	409	137
245	155	241	199	287	241	355	245

Эти таблицы дают значения, составляющие четыре уравнения Пифагора и четыре уравнения Диофанта, а также значения характеризующих величин указанных выше. Теперь легко видеть, например, что *164*+*123*=*287*, входящее в

уравнение Диофанта или *164-123=41*, которое также входит в уравнение Диофанта. Наличие четырех уравнений Диофанта и четырех уравнений Пифагора позволяют составлять такие комбинации чисел, как сумма и разность чисел, сумма четырех квадратов, равная квадрату числа, или сумма четырех или восьми квадратов, равная квадрату числа. В этом случае, идет речь о целочисленной многомерной евклидовой геометрии.

$$45^2 + 200^2 + 84^2 + 187^2 + 133^2 + 156^2 + 123^2 + 164^2 = 4 * 205^2 = 410^2$$

Таким образом, пифагоровы числа образуют подмножества из *5-ти* колец множества натуральных чисел. Эти подмножества замкнуты, что позволяют говорить о кольцах чисел Диофанта и Пифагора. Эти числа характеризуются произведениями или возведением в степень чисел первого класса сравнений по модулю четыре.

Числа Пифагора-Диофанта характеризуют кольца чисел и составленные из них последовательности (рис.1и рис.2).

Покажем возможность использования чисел Диофанта-Пифагора на примере построения календаря. Для этого выделим таблицу Диофанта-Пифагора для числа *365*, связанного с продолжительностью календарного года. В результате имеем четыре пятерки или семерки чисел:

- *27, 76, 219, 240, 275, 292, 357, 364* числа Пифагора
- 365
- 515, 511, 433, 391, 337, 281, 73, 35, (756, 798, 876, 880, 1121, 1163, 1241, 1245)
- числа Диофанта (таблица 5).

Таблица 5

27	364	365	391	337	756	1121
76	357	365	433	281	<i>798</i>	1163
219	292	365	511	73	<i>876</i>	1241
240	275	365	515	35	880	1245
365	0		365	0	756	0

Левая часть таблицы соответствует четырем уравнениям Пифагора, а восемь (или 16) чисел правой части - уравнению Диофанта.

Правая часть таблицы соответствует сумме компонент левой части, а левая часть таблицы полусумме компонент правой части, что соответствует уравнению Диофанта, например,

$$515^2 - 2*365^2 = -35^2$$
.

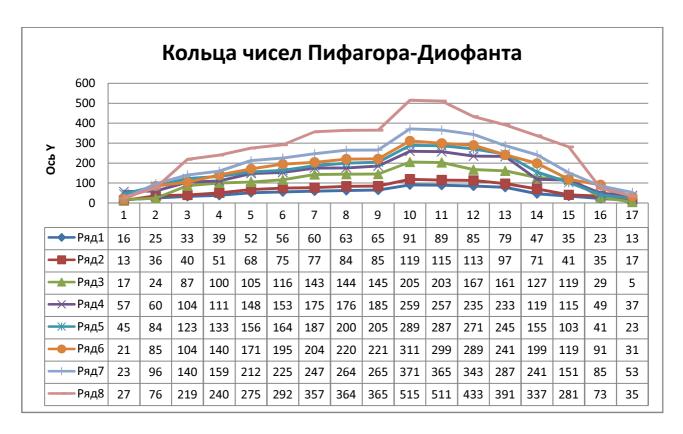


Рис. 1

Рис. 2

Левая часть соответствует четырем уравнениям Пифагора, например, $27^2 + 364^2 = 365^2$.

Некоторые числа этой таблицы имеют ясный характер, например, само число 365 (число суток в году) или число 27, совпадающее с лунным циклом вращения вокруг Земли, число 281. Другие же числа, видимо, имеют важное значение, но требуют увязки с природными циклическими явлениями. Отметим, что последнее уравнение дает квадрат продолжительности года, как сумму квадратов продолжительности двух других величин. То же самое можно сказать обо всех других парах чисел Пифагора и, следовательно, эти пары геометрическую интерпретацию. В результате пифагоровы имеют можно изобразить в виде таблицы, приведенной на диофантовы числа следующей странице. Отметим также, что как показано в [3] пифагоровы числа допускают процесс сложения и умножения чисел, что дает математическую основу их анализа. Так, например, число

В соответствии с процедурой умножения пифагоровых чисел (4*12-5*3, 4*5+12*3)=(33, 56)+(4*12+5*3, 4*5-12*3)=(63, -16, 65), т.е. $65^2=33^2+56^2=63^2+16^2.$

Таким образом, найдены дополнительные аргументы в пользу объединения чисел типа Пифагора, Диофанта в единую систему чисел. В частности, найден алгоритм получения колец чисел Пифагора-Диофанта, состоящих из *5-ти* или *7-ми* чисел и их бесконечных последовательностей. Важное значение приобретает вопрос нахождения числовых колец, обеспечивающих периодическую повторяемость чисел.

Числа пифагоровых троек наиболее удачно представлять в виде таблиц с параметрами h и g, определяющих значения величин c=x+y и d=x-y (таблица 6).

Отметим также, что длину чисел определяющих кольцевые последовательности можно увеличивать, поскольку уравнение Диофанта может быть использовано не только для чисел c и z, но также для чисел t и p, где p=c+z, а t=p+z. В результате могут быть построены кольцевые последовательности из 7-ми чисел x, y, z, c, dcz, p, t (таблица 7). Важно, что сразу формируются семь последовательностей. Возможно, видимо, дальнейшее увеличение длины колец. В таблице 7 приведены бесконечные последовательности чисел троек Пифагора и соответствующие им две пары последовательностей чисел Диофанта, т.е. колец из семи чисел Пифагора-Диофанта.

76	THOATOP	357
240		275
292		219
364}		27
35		515
73		599
231		433
337		391
756		1121
793		1163
376		1241
330	365	1245

Таблица 7

X	y	Z	c	dcz	p	t	dtp
461035	-461028	651997	7	922063	652004	1304001	7
79097	-79104	111865	-7	158201	111858	223723	7
13575	-13568	19193	7	27143	19200	38393	7
2325	-2332	3293	-7	4657	3286	6579	7
403	-396	565	7	<i>799</i>	572	1137	7
65	-72	97	-7	137	90	187	7
15	-8	17	7	23	24	41	7
-3	-4	5	-7	1	-2	3	7
-5	12	13	7	17	20	33	7
-55	48	73	-7	103	66	139	7
-297	304	425	7	601	432	857	7
-1755	1748	2477	-7	3503	2470	4947	7
-10205	10212	14437	7	20417	14444	28881	7

Таблицы 8-11 показывают набор бесконечных последовательностей пятерок чисел Пифагора, составляющих сумму четырех квадратов. Приведенные выше соотношения и таблицы могут быть получены также для суммы четырех квадратов, составляющих расширенное уравнение Пифагора. Это может иметь важное значение поскольку, как известно, каждое натуральное число может быть представлено в виде суммы четырех квадратов. С учётом важного значения сумм четырех квадратов, приведены различные способы формирования пятерок чисел Пифагора.

								пиолици о.
•••	•••	•••	•••	•••	•••	•••	•••	•••
1	7	17	<i>23</i>	31	41	47	49	#1
5	73	137	205	221	481	<i>353</i>	325	449
3	43	81	121	131	<i>283</i>	209	193	267
1	13	<i>25</i>	<i>37</i>	41	<i>85</i>	<i>65</i>	61	<i>85</i>
6	86	162	242	262	566	418	386	534
	•••	•••	•••	•••	•••	•••	•••	•••
1	7	17	23	31	41	47	49	71
1	13	25	37	41	<i>85</i>	65	61	<i>85</i>
1	9	19	27	33	<i>57</i>	51	51	<i>73</i>
1	5	13	17	25	29	37	41	61
2	18	38	54	66	114	102	102	146
	10	30	- 34	00	114	102	102	140
	<u></u>							
1	7	17	23	31	41	47	49	71
1	5	13	17	25	29	37	41	61
3	11	33	41	67	<i>59</i>	97	113	171
5	17	53	65	109	89	<i>157</i>	185	281
6	22	66	82	134	118	194	226	342
•••	•••	•••	•••	•••	•••	•••	•••	•••
1	7	17	<i>23</i>	31	41	47	49	<i>7</i> 1
5	17	53	<i>65</i>	109	89	<i>157</i>	185	281
17	<i>57</i>	179	219	369	297	531	627	<i>953</i>
29	97	305	373	629	505	905	1069	1625
34	114	358	438	738	594	1062	1254	1906
		•••	•••	•••	•••	•••	•••	•••
1		17	23	31	41	47	49	71
29	97	305	<i>373</i>	629	505	905	1069	1625
99	331	1041	1273	2147	1723	3089	3649	5547
169	<i>565</i>	1777	2173	3665	2941	<i>5273</i>	6229	9469
198	662	2082	2546	4294	3446	6178	7298	11094
150	002	2002	2340	7237	3770	0178	7230	11054
		47	22	24				
1	7	17 1777	23	31	41	47 5272	49 6220	71
169	<i>565</i>	1777	2173	<i>3665</i>	2941	5273	6229	9469
577	1929	6067	7419	12513	10041	18003	21267	32329
985	3293	10357	12665	21361	17141	30733	36305	55189
1154	3858	12134	14838	25026	20082	36006	42534	64658
•••	•••	•••	•••	•••	•••		•••	•••
1	7	17	23	31	41	47	49	71
985	3293	10357	12665	21361	17141	30733	36305	55189
3363	11243	35361	43241	72931	<i>58523</i>	104929	123953	188427
5741	19193	60365	73817	124501	99905	179125	211601	321665
6726	22486	70722	86482	145862	117046	209858	247906	376854
•••	•••	•••	•••	•••	•••	•••	•••	•••
1	7	17	23	31	41	47	49	71
5741	19193	60365	73817	124501	99905	179125	211601	321665
19601	65529	206099	252027	425073	341097	611571	722451	1098233
33461	111865	351833	430237	725645	582289	1044017	1233301	1874801
39202	131058	412198	504054	850146	682194	1223142	1444902	2196466
33202	131030	712170	JU70J7	030170	002134	1223172	1777302	2130700

Таблица 9.

x_0	x_1	x_2	x_3	t	x_{θ}	x_1	x_2	x_3	t	x_{θ}	x_I	x_2	<i>x</i> ₃	t
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
1	<i>29</i>	<i>17</i>	5	34	1	<i>58</i>	46	<i>80</i>	109	1	<i>87</i>	<i>75</i>	213	242
1	5	3	1	6	1	<i>10</i>	8	14	19	1	<i>15</i>	13	<i>37</i>	42
1	1	1	1	2	1	2	2	4	5	1	3	3	9	10
1	1	3	5	6	1	2	4	10	11	1	3	5	<i>17</i>	18
1	5	<i>17</i>	29	<i>34</i>	1	<i>10</i>	<i>22</i>	<i>56</i>	<i>61</i>	1	<i>15</i>	<i>27</i>	93	98
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
1	<i>29</i>	<i>75</i>	<i>97</i>	126	1	<i>58</i>	<i>104</i>	<i>230</i>	259	1	<i>87</i>	133	421	450
1	5	13	<i>17</i>	22	1	<i>10</i>	18	40	45	1	<i>15</i>	23	<i>73</i>	<i>78</i>
1	1	3	5	6	1	2	4	10	11	1	3	5	<i>17</i>	18
1	1	5	13	14	1	2	6	20	21	1	3	7	29	30
1	5	<i>27</i>	73	<i>78</i>	1	<i>10</i>	32	110	115	1	<i>15</i>	<i>37</i>	<i>157</i>	162
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
1	<i>29</i>	133	<i>305</i>	334	1	<i>58</i>	<i>162</i>	496	525	1	<i>87</i>	191	<i>745</i>	774
1	5	23	53	58	1	<i>10</i>	28	86	91	1	<i>15</i>	33	129	134
1	1	5	13	14	1	2	6	20	21	1	3	7	29	30
1	1	7	25	26	1	2	8	34	35	1	3	9	45	46
1	5	<i>37</i>	137	142	1	<i>10</i>	<i>42</i>	184	189	1	<i>15</i>	47	241	246
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
1	<i>29</i>	191	629	<i>658</i>	1	<i>58</i>	<i>220</i>	<i>878</i>	907	1	<i>87</i>	249	1185	1214
1	5	33	109	114	1	<i>10</i>	<i>38</i>	152	157	1	<i>15</i>	<i>43</i>	205	210
1	1	7	25	26	1	2	8	34	35	1	3	9	45	46
1	1	9	41	42	1	2	<i>10</i>	52	53	1	3	11	<i>65</i>	66
1	5	<i>47</i>	221	226	1	<i>10</i>	<i>52</i>	278	283	1	<i>15</i>	57	345	350
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
1	29	249	1069	1098	1	<i>58</i>	278	1376	1405	1	<i>87</i>	<i>307</i>	1741	1770
1	5	43	185	190	1	10	48	238	243	1	15	53	301	306
1	1	9	41	42	1	2	10	52	53	1	3	11	65	66
1	1	11	61	<i>62</i>	1	2	<i>12</i>	74	75	1	3	13	89	90
1	5	57	325	330	1	<i>10</i>	<i>62</i>	<i>392</i>	397	1	<i>15</i>	<i>67</i>	469	474
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
1	<i>29</i>	<i>307</i>	1625	1654	1	58	336	1990	2019	1	<i>87</i>	365	2413	2442
1	5	53	281	286	1	10	58	344	349	1	15	63	417	422
1	1	11	61	62	1	2	12	74	75	1	3	13	89	90
1	1	13	<i>85</i>	86	1	2	14	100	101	1	3	15	117	118
1	5	<i>67</i>	449	454	1	<i>10</i>	<i>72</i>	<i>526</i>	531	1	<i>15</i>	<i>77</i>	613	618
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
1	29	365	2297	2326	1	58	394	2720	2749	1	87	423	3201	3230
1	5	63	397	402	1	10	68	470	475	1	15	73	553	558
1	1	13	85	86	1	2	14	100	101	1	3	15	117	118
1	1	15	113	114	1	2	16	130	131	1	3	17	149	150
1	5	<i>77</i>	<i>593</i>	<i>598</i>	1	<i>10</i>	<i>82</i>	<i>680</i>	685	1	<i>15</i>	<i>87</i>	777	782
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••

Таблица 10.

x_{θ}	x_1	x_2	x_3	z	x_0	x_1	x_2	x_3	z	x_0	x_1	x_2	x_3	z	
8n+1	•••	•••	•••	•••		•••	•••	•••		•••	•••	•••	•••	•••	
1	29	17	5	34	1	58	46	80	109	1	87	<i>75</i>	213	242	
1	5	3	1	6	1	10	8	14	19	1	15	13	37	42	
1	1	1	1	2	1	2	2	4	5	1	3	3	9	10	
1	1	3	5	6	1	2	4	10	11	1	3	5	17	18	•••
1	5	17	29	34	1	10	22	56	61	1	15	27	93	98	•••
		•••												•••	•••
17	305	179	53	358	17	610	484	842	1147	17	915	789	2241	2546	
17	53	33	13	66	17	106	86	152	205	17	159	139	397	450	
17	13	19	25	38	17	26	32	70	83	17	39	45	141	154	
17	25	81	137	162	17	50	106	268	293	17	75	131	449	474	
17	137	467	797	934	17	274	604	1538	1675	17	411	741	2553	2690	
•••	•••	•••	•••	•••		•••	•••	•••		•••	•••	•••	•••	•••	
41	505	297	89	594	41	1010	802	1396	1901	41	1515	1307	3713	4218	•••
41	89	59	29	118	41	178	148	266	355	41	267	237	681	770	
41	29	57	85	114	41	58	86	200	229	41	87	115	373	402	
41	85	283	481	566	41	170	368	934	1019	41	255	453	1557	1642	
41	481	1641	2801	3282	41	962	2122	5404	5885	41	1443	2603	8969	9450	
•••	•••	•••	•••	•••		•••		•••	•••	•••	•••	•••	•••	•••	•••
49	1069	627	185	1254	49	2138	1696	2950	4019	49	3207	2765	7853	8922	
49	185	113	41	226	49	370	298	524	709	49	555	483	1377	1562	
49	41	51	61	102	49	82	92	194	235	49	123	133	409	450	
49	61	193	325	386	49	122	254	<i>640</i>	701	49	183	315	1077	1138	
49	325	1107	1889	2214	49	650	1432	3646	3971	49	975	1757	6053	<i>6378</i>	
8n+7	•••	•••	•••	•••		•••	•••	•••	•••		•••	•••	•••	•••	
8n+7	 97	 57			7	 194	 154	268		7	 291	251	713		
			•••		-				•••					•••	
7	97	57		114	7	194	154	268	365	7	291	251	713	810	
7 7	97 17	57 11	 17 5	114 22	7 7	194 34	154 28	268 50	365 67	7 7	291 51	251 45	713 129	810 146	
7 7 7	97 17 5	57 11 9	 17 5 13	114 22 18	7 7 7	194 34 10	154 28 14	268 50 32	365 67 37	7 7 7	291 51 15	251 45 19	713 129 61	810 146 66	•••
7 7 7 7	97 17 5 13	57 11 9 43	 17 5 13 73	114 22 18 86	7 7 7 7	194 34 10 26	154 28 14 56	268 50 32 142	365 67 37 155	7 7 7 7	291 51 15 39	251 45 19 69	713 129 61 237	810 146 66 250	
7 7 7 7	97 17 5 13 73	57 11 9 43 249	 17 5 13 73 425	114 22 18 86 498	7 7 7 7	194 34 10 26 146	154 28 14 56 322	268 50 32 142 820	365 67 37 155 893	7 7 7 7	291 51 15 39 219	251 45 19 69 395	713 129 61 237 1361	810 146 66 250 1434	
7 7 7 7 7	97 17 5 13 73	57 11 9 43 249	 17 5 13 73 425 	114 22 18 86 498	7 7 7 7 7	194 34 10 26 146	154 28 14 56 322	268 50 32 142 820	365 67 37 155 893	7 7 7 7 7	291 51 15 39 219	251 45 19 69 395	713 129 61 237 1361	810 146 66 250 1434	
7 7 7 7 7 23 23 23	97 17 5 13 73 373 65 17	57 11 9 43 249 219	 17 5 13 73 425 65 17 37	114 22 18 86 498 438	7 7 7 7 7 23 23 23	194 34 10 26 146 746	154 28 14 56 322 592	268 50 32 142 820 1030 188 98	365 67 37 155 893 1403 253 115	7 7 7 7 7 23	291 51 15 39 219 1119 195 51	251 45 19 69 395 965 171 61	713 129 61 237 1361 2741 489 193	810 146 66 250 1434 	
7 7 7 7 7 23 23 23 23	97 17 5 13 73 373 65 17 37	57 11 9 43 249 219 41 27 121	 17 5 13 73 425 65 17 37 205	114 22 18 86 498 438 82 54 242	7 7 7 7 7 23 23 23 23	194 34 10 26 146 746 130	154 28 14 56 322 592 106	268 50 32 142 820 1030 188 98 400	365 67 37 155 893 1403 253 115 437	7 7 7 7 7 23 23 23 23	291 51 15 39 219 1119 195 51	251 45 19 69 395 965 171 61 195	713 129 61 237 1361 2741 489 193 669	3114 554	
7 7 7 7 7 23 23 23	97 17 5 13 73 373 65 17	57 11 9 43 249 219 41 27	 17 5 13 73 425 65 17 37	114 22 18 86 498 438 82 54	7 7 7 7 7 23 23 23	194 34 10 26 146 746 130 34	154 28 14 56 322 592 106 44	268 50 32 142 820 1030 188 98	365 67 37 155 893 1403 253 115	7 7 7 7 7 23 23 23	291 51 15 39 219 1119 195 51	251 45 19 69 395 965 171 61	713 129 61 237 1361 2741 489 193	3114 554 210 310 3114	:: ::
7 7 7 7 7 23 23 23 23	97 17 5 13 73 373 65 17 37 205	57 11 9 43 249 219 41 27 121 699	17 5 13 73 425 65 17 37 205 1193	114 22 18 86 498 438 82 54 242 1398	7 7 7 7 7 23 23 23 23 23	194 34 10 26 146 746 130 34 74 410	154 28 14 56 322 592 106 44 158	268 50 32 142 820 1030 188 98 400 2302	365 67 37 155 893 1403 253 115 437 2507	7 7 7 7 7 23 23 23 23	291 51 15 39 219 1119 195 51 111 615	251 45 19 69 395 965 171 61 195 1109	713 129 61 237 1361 2741 489 193 669 3821	3114 554 210 240 250 250 250 250 250 250 250 260 270 270 270 270 270 270 270 270 270 27	:: :: ::
7 7 7 7 7 23 23 23 23 23 23 31	97 17 5 13 73 373 65 17 37 205 629	57 11 9 43 249 219 41 27 121 699 369	 17 5 13 73 425 65 17 37 205 1193 	114 22 18 86 498 438 82 54 242 1398 	7 7 7 7 7 23 23 23 23 23 23 31	194 34 10 26 146 746 130 34 74 410 	154 28 14 56 322 592 106 44 158 904 	268 50 32 142 820 1030 188 98 400 2302 1736	365 67 37 155 893 1403 253 115 437 2507 	7 7 7 7 7 23 23 23 23 23 23 	291 51 15 39 219 1119 195 51 111 615 	251 45 19 69 395 965 171 61 195 1109 	713 129 61 237 1361 2741 489 193 669 3821 	310 146 66 250 1434 3114 554 210 706 4026 5250	
7 7 7 7 7 23 23 23 23 23 31 31	97 17 5 13 73 373 65 17 37 205 629 109	57 11 9 43 249 219 41 27 121 699 369 67	 17 5 13 73 425 65 17 37 205 1193 109 25	114 22 18 86 498 438 82 54 242 1398 738 134	7 7 7 7 7 23 23 23 23 23 23 23 31	194 34 10 26 146 746 130 34 74 410 1258 218	154 28 14 56 322 592 106 44 158 904 998 176	268 50 32 142 820 1030 188 98 400 2302 1736 310	365 67 37 155 893 1403 253 115 437 2507 2365 419	7 7 7 7 7 23 23 23 23 23 23 31	291 51 15 39 219 1119 195 51 111 615 1887 327	251 45 19 69 395 965 171 61 195 1109 1627 285	713 129 61 237 1361 2741 489 193 669 3821 4621 813	310 3146 66 250 1434 3114 554 210 706 4026 5250 922	:::::::::::::::::::::::::::::::::::::::
7 7 7 7 7 23 23 23 23 23 31 31 31	97 17 5 13 73 373 65 17 37 205 629 109 25	57 11 9 43 249 219 41 27 121 699 369 67 33	 17 5 13 73 425 65 17 37 205 1193 109 25 41	114 22 18 86 498 438 82 54 242 1398 738 134	7 7 7 7 7 23 23 23 23 23 23 31 31	194 34 10 26 146 746 130 34 74 410 1258 218 50	154 28 14 56 322 592 106 44 158 904 998 176 58	268 50 32 142 820 1030 188 98 400 2302 1736 310 124	365 67 37 155 893 1403 253 115 437 2507 2365 419 149	7 7 7 7 7 23 23 23 23 23 23 31 31	291 51 15 39 219 1119 195 51 111 615 1887 327 75	251 45 19 69 395 965 171 61 195 1109 1627 285 83	713 129 61 237 1361 2741 489 193 669 3821 4621 813 257	310 3146 66 250 1434 3114 554 210 706 4026 5250 922 282	:::::::::::::::::::::::::::::::::::::::
7 7 7 7 7 23 23 23 23 23 23 31 31 31	97 17 5 13 73 373 65 17 37 205 629 109 25 41	57 11 9 43 249 219 41 27 121 699 369 67 33 131	17 5 13 73 425 65 17 37 205 1193 109 25 41 221	114 22 18 86 498 438 82 54 242 1398 738 134 66 262	7 7 7 7 7 23 23 23 23 23 23 31 31 31	194 34 10 26 146 746 130 34 74 410 1258 218 50 82	154 28 14 56 322 592 106 44 158 904 998 176 58 172	268 50 32 142 820 1030 188 98 400 2302 1736 310 124 434	365 67 37 155 893 1403 253 115 437 2507 2365 419 149 475	7 7 7 7 7 23 23 23 23 23 23 31 31 31	291 51 15 39 219 1119 195 51 111 615 1887 327 75 123	251 45 19 69 395 965 171 61 195 1109 1627 285 83 213	713 129 61 237 1361 2741 489 193 669 3821 4621 813 257 729	3114 554 210 706 4026 5250 922 282 770	:::::::::::::::::::::::::::::::::::::::
7 7 7 7 7 23 23 23 23 23 31 31 31	97 17 5 13 73 373 65 17 37 205 629 109 25	57 11 9 43 249 219 41 27 121 699 369 67 33	 17 5 13 73 425 65 17 37 205 1193 109 25 41	114 22 18 86 498 438 82 54 242 1398 738 134	7 7 7 7 7 23 23 23 23 23 23 31 31	194 34 10 26 146 746 130 34 74 410 1258 218 50	154 28 14 56 322 592 106 44 158 904 998 176 58	268 50 32 142 820 1030 188 98 400 2302 1736 310 124	365 67 37 155 893 1403 253 115 437 2507 2365 419 149	7 7 7 7 7 23 23 23 23 23 23 31 31	291 51 15 39 219 1119 195 51 111 615 1887 327 75	251 45 19 69 395 965 171 61 195 1109 1627 285 83	713 129 61 237 1361 2741 489 193 669 3821 4621 813 257	310 3146 66 250 1434 3114 554 210 706 4026 5250 922 282	:::::::::::::::::::::::::::::::::::::::
7 7 7 7 7 7 23 23 23 23 23 31 31 31 31	97 17 5 13 73 373 65 17 37 205 629 109 25 41 221	57 11 9 43 249 219 41 27 121 699 369 67 33 131 753	 17 5 13 73 425 65 17 37 205 1193 109 25 41 221 1285 	114 22 18 86 498 438 82 54 242 1398 738 134 66 262 1506	7 7 7 7 7 23 23 23 23 23 23 31 31 31	194 34 10 26 146 746 130 34 74 410 1258 218 50 82 442 	154 28 14 56 322 592 106 44 158 904 998 176 58 172 974	268 50 32 142 820 1030 188 98 400 2302 1736 310 124 434 2480	365 67 37 155 893 1403 253 115 437 2507 2365 419 149 475 2701	7 7 7 7 7 23 23 23 23 23 23 31 31 31 31	291 51 15 39 219 1119 195 51 111 615 1887 327 75 123 663 	251 45 19 69 395 965 171 61 195 1109 1627 285 83 213 1195 	713 129 61 237 1361 2741 489 193 669 3821 4621 813 257 729 4117	310 146 66 250 1434 3114 554 210 706 4026 5250 922 282 770 4338 	
7 7 7 7 7 7 23 23 23 23 23 31 31 31 31 31 47	97 17 5 13 73 373 65 17 37 205 629 109 25 41 221 905	57 11 9 43 249 219 41 27 121 699 369 67 33 131 753 	17 5 13 73 425 65 17 37 205 1193 109 25 41 221 1285 157	114 22 18 86 498 438 82 54 242 1398 738 134 66 262 1506 	7 7 7 7 7 23 23 23 23 23 31 31 31 31 47	194 34 10 26 146 746 130 34 74 410 1258 218 50 82 442 1810	154 28 14 56 322 592 106 44 158 904 998 176 58 172 974 	268 50 32 142 820 1030 188 98 400 2302 1736 310 124 434 2480 2498	 365 67 37 155 893 1403 253 115 437 2507 2365 419 149 475 2701 	7 7 7 7 7 23 23 23 23 23 23 31 31 31 31 47	291 51 15 39 219 1119 195 51 111 615 1887 327 75 123 663 2715	251 45 19 69 395 965 171 61 195 1109 1627 285 83 213 1195 	713 129 61 237 1361 2741 489 193 669 3821 4621 813 257 729 4117 6649	310 146 66 250 1434 3114 554 210 706 4026 5250 922 282 770 4338 	
7 7 7 7 7 7 23 23 23 23 23 31 31 31 31 47 47	97 17 5 13 73 373 65 17 37 205 629 109 25 41 221 905 157	57 11 9 43 249 219 41 27 121 699 369 67 33 131 753 531	 17 5 13 73 425 65 17 37 205 1193 109 25 41 221 1285 157 37	114 22 18 86 498 438 82 54 242 1398 738 134 66 262 1506 1062 194	7 7 7 7 7 23 23 23 23 23 31 31 31 31 31 47 47	194 34 10 26 146 746 130 34 74 410 1258 218 50 82 442 1810 314	154 28 14 56 322 592 106 44 158 904 998 176 58 172 974 	268 50 32 142 820 1030 188 98 400 2302 1736 310 124 434 2480 2498 448	365 67 37 155 893 1403 253 115 437 2507 2365 419 149 475 2701 3403 605	7 7 7 7 7 23 23 23 23 23 31 31 31 31 31 47 47	291 51 15 39 219 1119 195 51 111 615 1887 327 75 123 663 2715 471	251 45 19 69 395 965 171 61 195 1109 1627 285 83 213 1195 2341 411	713 129 61 237 1361 2741 489 193 669 3821 4621 813 257 729 4117 6649 1173	310 146 66 250 1434 3114 554 210 706 4026 5250 922 282 770 4338 7554 1330	
7 7 7 7 7 7 7 23 23 23 23 23 31 31 31 31 47 47 47	97 17 5 13 73 373 65 17 37 205 629 109 25 41 221 905 157 37	57 11 9 43 249 219 41 27 121 699 369 67 33 131 753 531 97	17 5 13 73 425 65 17 37 205 1193 109 25 41 221 1285 157 37 65	114 22 18 86 498 438 82 54 242 1398 738 134 66 262 1506 1062 194 102	7 7 7 7 7 23 23 23 23 23 31 31 31 31 47 47	194 34 10 26 146 746 130 34 74 410 1258 218 50 82 442 1810 314 74	154 28 14 56 322 592 106 44 158 904 998 176 58 172 974 1436 254 88	268 50 32 142 820 1030 188 98 400 2302 1736 310 124 434 2480 2498 448 190	365 67 37 155 893 1403 253 115 437 2507 2365 419 149 475 2701 3403 605 227	7 7 7 7 7 23 23 23 23 23 31 31 31 31 31 47 47	291 51 15 39 219 1119 195 51 111 615 1887 327 75 123 663 2715 471 111	251 45 19 69 395 965 171 61 195 1109 1627 285 83 213 1195 2341 411 125	713 129 61 237 1361 2741 489 193 669 3821 4621 813 257 729 4117 6649 1173 389	310 146 66 250 1434 3114 554 210 706 4026 5250 922 282 770 4338 7554 1330 426	
7 7 7 7 7 7 7 23 23 23 23 23 31 31 31 31 47 47 47 47	97 17 5 13 73 373 65 17 37 205 629 109 25 41 221 905 157 37 65	57 11 9 43 249 219 41 27 121 699 369 67 33 131 753 531 97 51 209	17 5 13 73 425 65 17 37 205 1193 109 25 41 221 1285 157 37 65 353	114 22 18 86 498 438 82 54 242 1398 738 134 66 262 1506 1062 194 102 418	7 7 7 7 7 23 23 23 23 23 31 31 31 31 31 47 47 47	194 34 10 26 146 746 130 34 74 410 1258 218 50 82 442 1810 314 74 130	154 28 14 56 322 592 106 44 158 904 998 176 58 172 974 1436 254 88 274	268 50 32 142 820 1030 188 98 400 2302 1736 310 124 434 2480 2498 448 190 692	2365 437 155 893 1403 253 115 437 2507 2365 419 149 475 2701 3403 605 227 757	7 7 7 7 7 23 23 23 23 23 31 31 31 31 31 47 47 47	291 51 15 39 219 1119 195 51 111 615 1887 327 75 123 663 2715 471 111 195	251 45 19 69 395 965 171 61 195 1109 1627 285 83 213 1195 2341 411 125 339	713 129 61 237 1361 2741 489 193 669 3821 4621 813 257 729 4117 6649 1173 389 1161	310 146 66 250 1434 3114 554 210 706 4026 5250 922 282 770 4338 7554 1330 426 1226	
7 7 7 7 7 7 7 23 23 23 23 23 31 31 31 31 47 47 47	97 17 5 13 73 373 65 17 37 205 629 109 25 41 221 905 157 37	57 11 9 43 249 219 41 27 121 699 369 67 33 131 753 531 97	17 5 13 73 425 65 17 37 205 1193 109 25 41 221 1285 157 37 65	114 22 18 86 498 438 82 54 242 1398 738 134 66 262 1506 1062 194 102	7 7 7 7 7 23 23 23 23 23 31 31 31 31 47 47	194 34 10 26 146 746 130 34 74 410 1258 218 50 82 442 1810 314 74	154 28 14 56 322 592 106 44 158 904 998 176 58 172 974 1436 254 88	268 50 32 142 820 1030 188 98 400 2302 1736 310 124 434 2480 2498 448 190	365 67 37 155 893 1403 253 115 437 2507 2365 419 149 475 2701 3403 605 227	7 7 7 7 7 23 23 23 23 23 31 31 31 31 31 47 47	291 51 15 39 219 1119 195 51 111 615 1887 327 75 123 663 2715 471 111	251 45 19 69 395 965 171 61 195 1109 1627 285 83 213 1195 2341 411 125	713 129 61 237 1361 2741 489 193 669 3821 4621 813 257 729 4117 6649 1173 389	310 146 66 250 1434 3114 554 210 706 4026 5250 922 282 770 4338 7554 1330 426	

Таблица 11.

_										_					$\overline{}$
1	5	3	1	6	1	10	8	14	19	1	15	13	37	42	•••
1	1	1	1	2	1	2	2	4	5	1	3	3	9	10	•••
17	53	33	13	66	17	106	86	152	205	17	159	139	397	450	•••
17	13	19	25	38	17	26	32	70	83	17	39	45	141	154	•••
41 41	89 29	59 57	29 85	118	41 41	178 58	148	266 200	355 229	41 41	267 87	237	681 373	770 402	•••
				114			200					115			•••
49 49	185 41	113 51	41 61	226 102	49 49	370 82	298 92	524 194	709 235	49 49	555 123	483 133	1377 409	1562 450	•••
															•••
73 73	193 53	123 89	53 125	246 178	73 73	386 106	316 142	562 320	755 373	73 73	579 159	509 195	1457 621	1650 674	•••
89	241	153	65	306	89	482	394	700	941	89	723	635	1817	2058	•••
89	65	133 107	149	214	89	402 130	394 172	386	451	89	195	237	753	2038 818	•••
97	397	241	85	482	97	794	638	1120	1517	97	1191	1035	2949	3346	•••
97	85	99	03 113	402 198	97	170	036 184	382	467	97 97	255	269	821	906	•••
113	337	211	85	422	113	674	548	970	1307	113	1011	885	2529	2866	•••
113	85	129	173	258	113	170	214	472	557	113	255	299	2329 941	1026	
137	305	201	97	402	137	610	506	908	1213	137	915	811	2329	2634	
137	97	187	277	374	137	194	284	658	755	137	291	381	1233	1330	•••
161	521	323	125	646	161	1042	844	1490	2011	161	1563	1365	3897	4418	•••
161	125	177	229	354	161	250	302	656	781	161	375	427	1333	1458	•••
161	689	417	145	834	161	1378	1106	1940	2629	161	2067	1795	5113	5802	•••
161	145	163	181	326	161	290	308	634	779	161	435	453	1377	1522	
217	565	361	157	722	217	1130	926	1648	2213	217	1695	1491	4269	4834	
217	157	267	377	534	217	314	424	958	1115	217	471	581	1853	2010	•••
217	745	459	173	918	217	1490	1204	2122	2867	217	2235	1949	5561	6306	
217	173	233	293	466	217	346	406	872	1045	217	519	579	1797	1970	
233	793	489	185	978	233	1586	1282	2260	3053	233	2379	2075	5921	6714	
233	185	251	317	502	233	370	436	938	1123	233	555	621	1929	2114	
241	1061	641	221	1282	241	2122	1702	2984	4045	241	3183	2763	7869	8930	
241	221	243	265	486	241	442	464	950	1171	241	663	685	2077	2298	•••
257	653	419	185	838	257	1306	1072	1910	2563	257	1959	1725	4941	5594	
257	185	321	457	642	257	370	506	1148	1333	257	555	691	2209	2394	•••
281	1009	619	229	1238	281	2018	1628	2866	3875	281	3027	2637	7521	8530	
281	229	297	365	594	281	458	526	1120	1349	281	687	755	2333	2562	•••
289	661	433	205	866	289	1322	1094	1960	2621	289	1983	1755	5037	5698	
289	205	387	569	774	289	410	592	1366	1571	289	615	<i>797</i>	2573	2778	
313	905	569	233	1138	313	1810	1474	2612	3517	313	2715	2379	6801	7706	
313	233	363	493	726	313	466	596	1322	1555	313	699	829	2617	2850	
329	901	571	241	1142	329	1802	1472	2614	3515	329	2703	2373	6789	7690	
329	241	393	545	<i>786</i>	329	482	634	1420	1661	329	723	875	2777	3018	•••
329	1189	729	269	1458	329	2378	1918	3376	4565	329	3567	3107	8861	10050	
329	269	347	425	694	329	538	616	1310	1579	329	807	885	2733	3002	
337	1513	913	313	1826	337	3026	2426	4252	5765	337	4539	3939	11217	12730	•••
337	313	339	365	678	337	626	652	1330	1643	337	939	965	2921	3234	
353	1313	803	293	1606	353	2626	2116	3722	5035	353	3939	3429	9777	11090	
353	293	369	445	738	353	586	662	1400	1693	353	879	955	2941	3234	•••
401	1025	657	289	1314	401	2050	1682	2996	4021	401	3075	2707	7753	8778	•••
401	289	499	709	998	401	578	788	1786	2075	401	867	1077	3441	3730	
409	1189	747	305	1494	409	2378	1936	3430	4619	409	3567	3125	8933	10122	
409	305	473	641	946	409	610	778	1724	2029	409	915	1083	3417	3722	•••
433	1657	1011	365	2022	433	3314	2668	4690	6347	433	4971	4325	12329	13986	
433	365	449	533	898	433	730	814	1712	2077	433	1095	1179	3621	3986	
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	

Последовательности чисел Пифагора (x, y, z) и Диофанта (c, z и t, p).

12	dtp	7	7	7	7	^	7	7	^	^	7	dtp	23	23	23	23	23	23	23	23	23	23
Таблица 12	t	11243	1929	331	57	II	6	43	249	1451	8457	t	23739	4073	669	121	27	41	219	1273	7419	43241
	d	7950	1364	234	40	9	4-	-30	9/1-	-1026	-5980	d	16786	2880	494	84	10	-24	-154	006-	-5246	-30576
	dcz	7	-7	^	-7	^	-7	7	-7	^	-7	dcz	23	-23	23	-23	23	-23	23	-23	23	-23
	c	4657	799	137	23	I	-17	-103	109-	-3503	-20417	c	9833	1687	289	47	-7	68-	-527	-3073	-17911	-104393
	2	3293	565	97	17	S	13	73	425	2477	14437	2	6953	1193	205	37	17	65	373	2173	12665	73817
	λ	2332	396	72	∞	4	-12	-48	-304	-1748	-10212	у	4928	832	156	12	∞	-56	-252	-1548	-8944	-52208
	\boldsymbol{x}	2325	403	92	15	£-	-5	-55	-297	-1755	-10205	x	4905	855	133	35	-15	-33	-275	-1525	<i>-</i> 89 <i>6</i> 7	-52185
ı	dtp	I	I	I	I	I	I	I	I	I	I	dtp	17	17	17	17	17	17	17	17	17	17
	t	3363	277	66	17	3	I	3	17	66	577	t	35361	2909	104I	179	33	6I	8I	467	2721	15859
	d	2378	408	20	12	7	0	-5	-12	-70	-408	d	25004	4290	736	126	20	9-	-56	-330	-1924	-11214
	dcz	I-	I	<i>I-</i>	I	<i>I-</i>	I	I-	I	<i>I</i> -	I	dcz	17	-17	17	-17	17	-17	17	-17	17	-17
	С	1393	239	41	7	I	<i>I-</i>	-7	-41	-239	-1393	С	14647	2513	431	73	7	-31	-193	-1127	-6569	-38287
	2	985	691	29	S	I	I	S	29	691	985	2	10357	1777	305	53	13	25	137	797	4645	27073
	у	969	120	20	4	0	0	4-	-20	-120	969-	y	7332	1248	224	28	12	-24	-88	-572	-3276	-19152
	\boldsymbol{x}	269	6II	21	B	I	<i>I-</i>	£.	-21	611-	<i>269-</i>	\boldsymbol{x}	7315	1265	207	45	-5	-7	-105	-555	-3293	-19135

В таблицах 9-12 показаны различные, очевидные способы формирования пятерок чисел Пифагора, а в таблице 13- способы формирования семерок чисел Пифагора-Диофанта. Характерной и очень важной особенностью последовательности этих чисел является то, что эти числа могут быть основой для получения бесконечных числовых последовательностей не только приведенных пятерок чисел, но и расширения числовых последовательностей во всех направлениях вплоть до бесконечно больших значений. Так, например, использование рекуррентного соотношения $P_{n+1}=6*P_n-P_{n-1}$, для каждой пятерки обеспечивает выполнение равенство $x_1^2+x_2^2+x_3^2+x_4^2=x_5^2$.

Из пары соседних чисел

Таблица 13

x_1	x_2	x_3	x_4	x_5
7	13	9	5	18
7	5	11	17	22

получим

Таблица 14

x_1	x_2	x_3	x_4	x_5
7	425	249	73	498
7	73	43	13	86
7	13	9	5	18
7	5	11	17	22
7	<i>17</i>	57	97	114
7	97	331	565	662
7	425	249	73	498

Способ размножения последовательности чисел Пифагора-Диофанта приведен в таблице 15.

Таблица 15

x	у	z	С	d	р	t
3	4	5	7	1	12	17
5	12	13	17	7	30	43
16	30	34	46	14	80	114
39	80	89	119	41	208	297
105	<i>208</i>	233	313	103	546	<i>779</i>
272	546	610	818	274	1428	2038

Литература

- 4. Воробьев Н.Н. Числа Фибоначчи. Наука, 1978, 144 с.
- 5. Коротков А.В. Элементы классификации пифагоровых чисел. Новочеркасск: Набла, 2009. 73 с.
- 6. Коротков А.В. Алгебры над кольцом чисел Пифагора. Сознание и физическая реальность т.16, №11 2011. 17-30 с
- 7. Коротков А.В. Последовательности Фибоначчи-Пифагора. Журнал Альманах современной науки и образования. Данный выпуск. 2013г. 12 стр.